多达60%的近地天体可能是暗色彗星 我们喝的是它们送来的水吗?

多达60%的近地天体可能是暗色彗星 我们喝的是它们送来的水吗? 研究结果表明,小行星带中的小行星(太阳系中大致位于木星和火星之间的一个区域,包含了太阳系中的大部分岩质小行星)有地表下的冰。这项研究还显示了将冰运送到近地太阳系的潜在途径。地球是如何获得水的,这是一个长期存在的问题。其中一个大天体可能来自木星家族彗星,这些彗星的轨道接近木星。研究小组的研究成果发表在《伊卡洛斯》(Icarus)杂志上。暗彗星有点神秘,因为它们兼具小行星和彗星的特征。小行星是没有冰的岩质天体,运行轨道离太阳较近,通常在所谓的冰线范围内。这意味着它们离太阳足够近,小行星可能携带的任何冰都会升华,或者从固态冰直接变成气体。彗星是冰冷的天体,会显示出模糊的彗尾,彗尾周围通常环绕着一团云。升华的冰携带着尘埃,形成了彗云。此外,彗星通常有轻微的加速度,这种加速度不是由重力推动的,而是由冰的升华推动的,称为非重力加速度。研究人员检查了七颗暗彗星,并估计所有近地天体中有0.5%到60%可能是暗彗星,这些暗彗星没有彗尾,但有非重力加速度。研究人员还认为,这些暗彗星很可能来自小行星带,由于这些暗彗星具有非轨道加速度,研究结果表明小行星带中的小行星含有冰。密歇根大学天文学系研究人员阿斯特-G-泰勒说:"我们认为这些天体来自内主小行星带和/或外主小行星带,这意味着这是将一些冰送入内太阳系的另一种机制。内主带的冰可能比我们想象的要多。可能还有更多这样的天体。这可能是最近天体中的一个重要部分。我们真的不知道,但因为这些发现,我们有了更多的问题。"在之前的工作中,包括泰勒在内的一组研究人员确定了一组近地天体的非重力加速度,并将其命名为"暗彗星"。他们确定,暗彗星的非重力加速度很可能是少量冰升华的结果。在目前的工作中,泰勒和他们的同事希望发现黑暗彗星的来源。他们说:"近地天体在当前轨道上停留的时间并不长,因为近地环境很混乱。它们在近地环境中只能停留大约1000万年。因为太阳系的年龄远远大于这个数字,这意味着近地天体来自某个地方我们不断从另一个更大的来源获得近地天体。"为了确定这一黑暗彗星群的起源,泰勒和他们的合作者创建了动力学模型,为来自不同彗星群的天体分配了非重力加速度。然后,他们根据所分配的非重力加速度,模拟了这些天体在 10 万年内的运行轨迹。研究人员观察到,这些天体中的许多天体最终出现在今天暗色彗星所在的位置,并发现在所有潜在来源中,主小行星带是最有可能的起源地。泰勒说,其中一颗名为 2003 RM 的黑暗彗星在靠近地球的椭圆轨道上经过,然后飞向木星,再从地球上空返回,它的运行轨迹与木星家族彗星的运行轨迹相同,也就是说,它的位置与从轨道上向内撞击的彗星一致。同时,研究发现其余的暗色彗星很可能来自小行星带的内带。由于暗色彗星很可能有冰,这表明主带内部存在冰。然后,研究人员将之前提出的一个理论应用于黑暗彗星群,以确定这些天体为何如此之小且快速旋转。彗星是由冰结合在一起的岩石结构想象一下肮脏的冰块。一旦它们在太阳系的冰线内受到撞击,冰块就会开始释放气体。这会导致天体加速,但也会导致天体快速旋转快到足以让天体碎裂。这些碎片上也会结冰,所以它们也会越转越快,直到碎成更多碎片,随着这种情况的发生,这些物体不断失去冰层,变得更小且旋转得更快。研究人员认为,较大的暗色彗星2003 RM很可能是从小行星带的外主带中被踢出的较大天体,而他们正在研究的其他六个天体很可能来自内主带,是由一个被撞向内侧然后碎裂的天体构成的。编译自/ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

NASA近地天体探测器(NEOWISE)已经发布了其第10年的红外数据

NASA近地天体探测器(NEOWISE)已经发布了其第10年的红外数据 这幅艺术家的构想图展示了宽视场红外巡天探测器(WISE)航天器在环绕地球的轨道上运行的情况。在 NEOWISE 任务中,它将发现小行星并描述其特征。图片来源:NASA/JPL-Caltech美国宇航局/JPL-加州理工学院时域天文学可以帮助科学家看到遥远变星的亮度变化,并观测到遥远的黑洞在吞噬物质时发出的耀眼光芒。但是近地天体监视卫星特别关注我们地球附近的宇宙环境,它所进行的时域红外测量用于行星科学,尤其侧重于小行星和彗星。NEOWISE 是近地天体宽视场红外巡天探测器(Near-Earth Object Wide-field Infrared Survey Explorer)的简称,是美国国家航空航天局(NASA)行星防御战略的重要组成部分,它帮助该机构完善小行星和彗星的轨道,同时估算它们的大小。其中一个例子就是具有潜在危险的小行星阿波菲斯,它将于 2029 年接近我们的地球。这幅太阳系自上而下的动画视图显示了近地天体监视卫星(NEOWISE)自2014年重新启动以来的十年间所探测到的所有小行星和彗星的位置。资料来源:IPAC/加州理工学院/亚利桑那大学通过从低地轨道位置反复观测天空,NEOWISE 对 44,000 多个太阳系天体进行了 145 万次红外测量。其中包括 3000 多个近地天体,该太空望远镜发现了其中的 215 个。其中 25 颗是彗星,包括著名的 NEOWISE 彗星。亚利桑那大学和加州大学洛杉矶分校的 NEOWISE 首席研究员 Amy Mainzer 说:"这台空间望远镜是描述未来可能对地球造成危害的近地天体特征的主力军。近地天体监视卫星为科学界免费提供的数据将为几代人带来回报"。从数据到发现该任务由美国宇航局喷气推进实验室管理,每天三次向美国跟踪和数据中继卫星系统(TDRSS)网络发送数据,然后由该网络将数据传送到位于加利福尼亚州帕萨迪纳的加州理工学院天文数据研究中心IPAC。IPAC 将原始数据处理为可在线访问的完全校准图像。它还会生成近地天体探测结果,并将其发送给小行星中心国际公认的太阳系天体位置测量信息交换中心。通过在不同时间搜索同一片天空的多幅图像,科学家们可以捕捉到各个小行星和彗星的运动轨迹。IPAC NEOWISE 科学数据系统的首席科学家 Roc Cutri 说:"我们生成的科学产品能够识别天空中的特定红外源,并精确地确定其位置和亮度,从而使发现成为可能。当我第一次看到这些数据时,最有趣的事情就是知道以前没有人见过这些数据。这让它处于进行真正探索的独特位置"。IPAC 还将为NASA 的近地天体勘测器提供数据产品,该勘测器的发射目标是不早于 2027 年。下一代空间巡天望远镜由JPL 管理,Mainzer 担任首席研究员,它将寻找一些最难发现的近地天体,如不反射太多可见光但在红外光下更闪亮的暗色小行星和彗星。两个任务,一个航天器近地天体红外巡天探测器(NEOWISE)航天器于 2009 年发射升空,但其任务和名称有所不同:它是宽视场红外巡天探测器(Wide-field Infrared Survey Explorer,简称 WISE),其任务是勘测整个天空。作为红外望远镜,WISE 研究遥远的星系、相对较冷的红矮星、爆炸的白矮星、排气彗星以及近地天体。红外望远镜需要低温冷却剂,以防止航天器的热量干扰其观测。在 WISE 望远镜的冷却剂耗尽,无法再观测宇宙中最冷的天体后,NASA 于 2011 年让航天器进入休眠状态。但由于该望远镜仍能探测到彗星和小行星被太阳加热时发出的红外光,梅因泽提议重新启动航天器,对它们进行观测。该任务于2014年重新启动,并更名为NEOWISE,延长了最初计划运行不到一年的航天器的寿命。NEOWISE的副首席研究员、IPAC的科学家约瑟夫-马西埃罗(Joseph Masiero)说:"我们的任务为期7个月,已经过去了14年,这个小任务伴随了我的整个职业生涯它一直在继续,不断有新的发现,帮助我们更好地了解宇宙。"如果不是因为轨道动力学的限制,我相信这个航天器还能继续运行很多年"。太阳活动正在导致 NEOWISE 脱离轨道,预计该航天器将下降到足够低的地球大气层,最终将无法使用。JPL的NEOWISE项目经理约瑟夫-亨特(Joseph Hunt)说:"NEOWISE已经远远超过了它最初的设计寿命。但是,由于我们在建造它的时候没有考虑到如何到达更高的轨道,因此航天器在大气层中的位置会自然下降到很低,无法使用,并在退役后的几个月内完全烧毁。具体时间取决于太阳的活动。"关于使命的更多信息近地天体监视卫星和近地天体巡天探测器支持位于华盛顿美国航天局总部的美国航天局行星防御协调办公室(PDCO)的目标。2005 年《美国国家航空航天局授权法案》指示美国国家航空航天局至少发现 90%的直径超过 140 米(460 英尺)的近地天体,并确定其特征,这些天体距离我们的行星轨道在 3000 万英里(4800 万公里)以内。这种大小的天体如果撞击地球,可能会造成严重的区域性破坏,甚至更糟。JPL 在科学任务局内为 PDCO 管理和运行 NEOWISE 任务。犹他州洛根的空间动力学实验室建造了科学仪器。科罗拉多州博尔德的波尔航天技术公司建造了航天器。科学数据处理在加州理工学院的 IPAC 进行。加州理工学院为美国国家航空航天局管理 JPL。 ... PC版: 手机版:

封面图片

加入行星狩猎计划的NASA志愿者找到15颗罕见的"活跃小行星"

加入行星狩猎计划的NASA志愿者找到15颗罕见的"活跃小行星" 为了找到这 15 个罕见天体,8000 多名志愿者对智利维克托-布兰科望远镜(Victor M. Blanco telescope)上暗能量相机(DECam)拍摄的 43 万张图像进行了梳理。有关这一成果的论文现已发表在《天文学杂志》上,其中九名志愿者是论文的共同作者。来自意大利乌迪内的志愿者 Virgilio Gonano 说:"对于像我这样的业余天文爱好者来说,这简直是梦想成真。祝贺所有工作人员和检查图像的朋友们!"美国国家航空航天局(NASA)"活跃小行星"公民科学项目的志愿者识别出了来自小行星 2015 VA108 的彗尾,这是美国国家航空航天局"活跃小行星"公民科学项目的志愿者发现的活跃小行星之一。该天体(绿色箭头所示)的轨道完全位于主小行星带(位于火星和木星之间)内,但却有一个像彗星一样的尾巴。图片来源:Colin Orion Chandler(华盛顿大学)通过研究这些罕见的活跃小行星,科学家们可以了解太阳系的形成和演变,包括地球上水的起源。这些天体还可能有助于未来的太空探索,因为造成彗星状尾巴的同样的冰可以为火箭提供动力或提供可呼吸的空气。来自俄亥俄州代顿市的志愿者蒂芙尼-肖-迪亚兹说:"从第一批数据开始,我就是活跃小行星团队的一员。如果说这个项目已经成为我生命中重要的一部分,那真是轻描淡写。只要时间或健康状况允许,我每天都期待着对研究对象进行分类,能经常与这些受人尊敬的科学家一起工作,我感到无比荣幸。"活跃小行星项目由华盛顿大学和DiRAC研究所的LINCC框架项目科学家Colin Orion Chandler博士创立。要加入该项目并帮助发现下一颗活跃小行星,请访问:ScitechDaily ... PC版: 手机版:

封面图片

柯伊伯带天体486958 Arrokoth充当着时间胶囊 保存着数十亿年前的古老冰层

柯伊伯带天体486958 Arrokoth充当着时间胶囊 保存着数十亿年前的古老冰层 最新研究表明,柯伊伯带中的天体(如阿罗科斯)在形成过程中保留了古老的冰层,这对现有理论提出了挑战,并提出了彗星行为的 "休眠冰弹 "模型。这张图片是2019年1月1日美国宇航局新视野号飞船飞越柯伊伯带天体2014 MU69时拍摄的。图片来源:NASA/约翰霍普金斯大学应用物理实验室/西南研究所研究人员利用他们开发的一个新模型来研究彗星是如何演变的,结果表明,这种冰封状态并不是Arrokoth所独有的,柯伊伯带的许多天体柯伊伯带位于太阳系的最外围地区,可以追溯到大约46亿年前太阳系形成的早期可能也含有它们形成时的古老冰层。布朗大学的行星科学家萨姆-伯奇(Sam Birch)是这篇论文的共同作者之一,他说:"我们在工作中用一个相当简单的数学模型证明,可以把这些原始的冰锁定在这些天体的内部深处很长一段时间。大多数人都认为这些冰应该早已消失,但我们现在认为情况可能并非如此。"伯奇在《Icarus》杂志上介绍了他与合著者、SETI研究所高级研究科学家奥尔坎-乌穆尔汉(Orkan Umurhan)的研究成果。直到现在,科学家们还很难弄清这些太空岩石上的冰随着时间的推移会发生什么变化。这项研究对广泛使用的热演化模型提出了质疑,因为这些模型无法解释像一氧化碳一样对温度敏感的冰的寿命。研究人员为这项研究创建的模型解释了这一变化,并表明这些天体中的高挥发性冰层的存在时间比以前想象的要长得多。Birch说:"Arrokoth非常寒冷,为了让更多的冰升华或者说直接从固态变成气态,跳过其中的液态阶段它升华成的气体必须首先通过其多孔的海绵状内部向外流动。诀窍在于,移动气体还必须使冰升华,因此会产生多米诺骨牌效应:Arrokoth内部越来越冷,升华的冰越来越少,移动的气体越来越少,温度越来越低,如此循环。最终,一切都被有效地关闭了,剩下的就是一个充满气体的物体,而这些气体会更缓慢地流出。"这项工作表明,柯伊伯带天体可以充当休眠的"冰炸弹",将挥发性气体保存在内部数十亿年,直到轨道移动使它们更接近太阳,热量使它们变得不稳定。这个新想法可以帮助解释为什么柯伊伯带的这些冰冻天体在第一次靠近太阳时爆发得如此猛烈。突然,它们内部的冷气体迅速增压,这些天体就演变成了彗星。"最关键的是,我们纠正了人们几十年来为这些非常寒冷和古老的天体所假设的物理模型中的一个严重错误,"伯奇在论文中的合著者乌穆尔汉说。"这项研究可能成为重新评估彗星内部演化和活动理论的最初推动力。"这项研究挑战了现有的预测,为了解彗星的性质及其起源开辟了新的途径。Birch和Umurhan是美国国家航空航天局彗星天体生物学探索样本返回(CAESAR)任务的共同研究员,该任务旨在从67P/丘留莫夫-格拉西缅科彗星上获取至少80克的表面物质,并将其送回地球进行分析。这项研究的结果有助于指导 CAESAR 的探测和取样策略,加深我们对彗星演化和活动的了解。伯奇说:"在整个外太阳系的小天体中,很可能封存着大量的这些原始材料这些材料正等待着爆发,让我们对它们进行观测,或者在我们能够把它们取回并带回地球之前处于深度冷冻状态。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家解码小行星"龙宫"的彗星有机物质

科学家解码小行星"龙宫"的彗星有机物质 研究小组成员包括东北大学研究生院理学研究科地球科学系助理教授 Megumi Matsumoto。他们的详细研究结果最近发表在《科学进展》(Science Advances)杂志上 。(左)在"龙宫"样本表面发现的熔体飞溅。熔体飞溅呈圆形。(右图)熔融喷溅物的 CT 切片图像,显示其内部存在大量空隙。资料来源:Megumi Matsumoto et al.小行星"龙宫"没有保护大气层,其表层直接暴露在太空中。太空中细小的行星际尘埃会撞击小行星表面,导致小行星表面物质成分发生变化。松本和她的同事们发现,样本表面含有小的"熔体飞溅",大小从5微米到20微米不等。这些熔体飞溅是彗星尘埃的微流星体轰击"龙宫"时产生的。松本说:"我们的三维 CT 成像和化学分析显示,熔体飞溅物主要由硅酸盐玻璃组成,其中有空隙和小的球形硫化铁夹杂物。熔体飞溅的化学成分表明,"龙宫"的含水硅酸盐与彗星尘埃混合在一起。"在熔融喷溅物中发现的碳质材料。碳质材料呈现海绵状质地,含有小的硫化铁夹杂物。这与彗星尘埃中发现的原始有机物类似。资料来源:Megumi Matsumoto et al.在撞击引起的加热和快速冷却过程中,"龙宫"表面物质和彗星尘埃的混合和熔化形成了熔体飞溅。这些空隙相当于从含水硅酸盐中释放出来的水蒸气,随后被熔体飞溅物捕获。分析还揭示了熔体飞溅物中具有丰富纳米孔隙和硫化铁夹杂物的小型碳质材料。碳质材料在质地上类似于彗星尘埃中的原始有机物,但它们缺乏氮和氧,因此在化学性质上与有机物不同。松本补充说:"我们认为,碳质材料是在撞击引起的加热过程中,通过氮和氧等挥发性物质的蒸发,由彗星有机物形成的。这表明彗星物质是从外太阳系被传送到近地区域的,这些有机物质可能是生命的小种子,曾经从太空被传送到地球。"展望未来,研究小组希望通过对"龙宫"样本的研究,找到更多的熔体飞溅物,从而进一步了解原始太空物质流入地球的情况。编译来源:ScitechDailyDOI: 10.1126/sciadv.adi7203 ... PC版: 手机版:

封面图片

@onlychigua 太阳系周围有一个由冰和尘埃组成的巨大“泡泡”奥尔特云,它是太阳系的最远边界,也是彗星孕育的摇篮,也可能存

@onlychigua 太阳系周围有一个由冰和尘埃组成的巨大“泡泡”奥尔特云,它是太阳系的最远边界,也是彗星孕育的摇篮,也可能存在一些小行星和矮行星。⁠ 按照目前每天约 100 万英里的速度,旅行者 1 号航天器大约 300 年后才能进入奥尔特云,而且需要旅行约 30,000 年才能离开它。

封面图片

新视野号探测显示:柯伊伯带比原本想象的大的多

新视野号探测显示:柯伊伯带比原本想象的大的多 这片区域存在大量的物质包括各种含冰的小行星、彗星或者不规则天体,当然含冰不一定是水冰,还有甲烷、氨等。存在的大一点的行星至少有四颗,都是矮行星,分别是冥王星、妊神星、鸟神星和阋神星。柯伊伯带也被认为是太阳系形成之初的残留物质区域,也就是当时太阳和各种大行星形成后没用完的物质,现在内太阳系的不少彗星就是来自柯伊伯带。宽度比原本预计的要高得多:原本天体物理学家通过观测数据并建立模型预估,柯伊伯带的宽度大约是 50 个天文单位,出了这个宽度之后,物质密度开始下降,也就是物质减少了。不过新视野号提供的数据让研究人员有些惊讶,因为数据表明柯伊伯带可能延伸至 80 个天文单位甚至更远。发布在天体物理学杂志快报上的一篇新论文称,柯伊伯带可能还存在第二条外带,因为探测器在这里发现了一些全新的、由物体碰撞产生的更多尘埃。当然这种推测还需要更多研究进行佐证,也有研究人员认为是太阳的辐射压将更多物质推到了更远的距离。探索柯伊伯带的意义:对人类来说探索柯伊伯带是非常必要的,柯伊伯带的天体或者说物质是太阳系形成的残留物,因此可以通过研究这些残留物来构建太阳系在 40 亿年前形成时的模型,让我们可以了解太阳系起源。新视野号探测器预计会在 2028 年离开柯伊伯带,到时候如果探测器仍然正常工作的话,NASA 会安排新任务,让探测器继续向宇宙深处进发。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人