科学家发现自然界最大细胞中神秘漩涡运动的起源

科学家发现自然界最大细胞中神秘漩涡运动的起源 最新研究揭示了卵细胞中"漩涡状"流动背后的自然机制,这种流动对营养物质的高效分配至关重要。这些发现是通过先进的建模和实验方法实现的,为细胞运输提供了新的见解,并可能影响更广泛的生物学研究。模拟微管如何弯曲并引导成熟卵细胞中的物质形成旋涡状流动的快照。图片来源:S. Dutta 等人科学家们早就知道,成熟的卵细胞(称为卵母细胞)会在内部产生类似旋涡的液流来运输营养物质,但这些液流是如何产生的一直是个谜。现在,Flatiron 研究所的计算科学家与普林斯顿大学和西北大学的合作者共同领导的研究揭示了这些流动看起来就像微型龙卷风是由一些细胞成分的相互作用有机产生的。他们的研究成果发表在四月号的《自然-物理》(Nature Physics)杂志上,他们利用理论、先进的计算机建模和果蝇卵细胞实验揭示了龙卷风的力学原理。这些成果有助于科学家们更好地理解有关卵细胞发育和细胞运输的基础问题。"我们的发现代表了这一领域的一大飞跃,"共同作者、Flatiron 研究所计算生物学中心(CCB)主任迈克尔-谢利(Michael Shelley)说。"我们能够应用多年来从其他研究中获得的先进数值技术,这让我们能够比以往更好地看待这个问题。"在一个典型的人体细胞中,一个典型的蛋白质分子通过扩散从细胞的一侧蜿蜒到另一侧只需要 10 到 15 秒;而在一个小型细菌细胞中,这一过程只需要一秒钟。但在本文研究的果蝇卵细胞中,单是扩散就需要一整天的时间这对细胞的正常功能来说时间太长了。相反,这些卵细胞发展出了"旋风流",它在卵细胞内部盘旋,迅速分配蛋白质和营养物质,就像龙卷风能把物质卷起并移动到比风更远更快的地方一样。在这段循环播放的卵母细胞视频中,可以看到物质在整个生长细胞中循环并帮助分配养分。图片来源:S. Dutta 等人"受精后,卵母细胞将成为未来的动物,"该研究的合著者、普林斯顿大学和中央研究院的研究员萨扬坦-杜塔(Sayantan Dutta)说。"如果破坏了卵母细胞中的流动,所产生的胚胎就不会发育"。研究人员使用了 Flatiron 研究所研究人员开发的一款名为SkellySim 的先进开源生物物理学软件包。通过SkellySim,他们模拟了参与制造细胞的成分。其中包括微管细胞内部的柔性细丝和分子马达,分子马达是作为细胞工作母机的特化蛋白质,携带着被称为有效载荷的特殊分子组。科学家还不太清楚这些有效载荷是由什么组成的,但它们在产生气流中起着关键作用。研究人员模拟了数以千计的微管在载荷分子马达的作用力下的运动。通过在实验和模拟之间来回切换,研究人员得以了解旋流的结构,以及它们是如何从细胞液和微管之间的相互作用中产生的。"我们的理论工作使我们能够放大并以三维方式实际测量和可视化这些旋涡,"该研究的合著者、CCB 研究科学家 Reza Farhadifar 说。"我们看到了这些微管如何在没有任何外部线索的情况下,通过自组织产生大规模流动。"在这段循环播放的卵母细胞视频中,可以看到物质在整个生长细胞中循环并帮助分配养分。图片来源:S. Dutta 等人模型显示,在卵母细胞内部,微管在分子马达的作用下发生弯曲。当微管在这种负荷下屈曲或弯曲时,会导致周围液体移动,从而使其他微管重新定向。在一个足够大的弯曲微管群中,所有微管都朝同一方向弯曲,流体流动就会变得"合作"。随着微管的集体弯曲,移动的有效载荷在整个卵子中形成漩涡或漩涡状流动,帮助分子分散到细胞周围。有了漩涡,分子可以在 20 分钟而不是 20 小时内穿过细胞。谢利说:"该模型显示,该系统具有令人难以置信的自我组织能力,能够创造出这种功能性流动。而只需要一些成分只有微管、细胞的几何形状和携带有效载荷的分子马达。"这些新发现为更好地了解卵细胞的发育奠定了基础。这些结果还有助于揭开其他细胞类型中物质运输的神秘面纱。"既然我们知道了这些漩涡是如何形成的,我们就可以提出更深层次的问题,比如它们是如何混合细胞内的分子的?这开启了理论与实验之间的新对话。"法哈迪法尔说。"这项新研究让人们对微管有了全新的认识。微管在植物和动物等几乎所有真核生物的各种细胞类型和细胞功能(如细胞分裂)中发挥着核心作用。这使它们成为"细胞工具箱中非常重要的一部分",Dutta 说。"通过更好地理解它们的机制,我认为我们的模型将有助于推动细胞生物物理学中许多其他非常有趣的问题的发展"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

邓迪大学科学家发现阻止活跃癌细胞的方法

邓迪大学科学家发现阻止活跃癌细胞的方法 邓迪大学药物发现部门(DDU)与伦敦玛丽女王大学的一个合作研究项目发现了一种被称为工具分子的化学物质,它可以阻止活跃的癌细胞。通过合作推进癌症治疗使用这些工具分子可以迫使一种特定类型乳腺癌的肿瘤细胞进入促衰老状态类似于睡眠状态,在这种状态下,它们不再分裂或导致肿瘤生长。这种情况会使癌细胞对第二类工具分子(称为"衰老分解药物")产生敏感性,从而消灭癌细胞。它还可以"释放"癌细胞,让人体的免疫系统看到它们,从而提供更多的治疗机会。研究人员在研究基底样乳腺癌(BLBC)时开发出了这种"双拳"方法。癌症新疗法的潜力由巴兹慈善机构资助、伦敦玛丽女王大学衰老学教授兼表型筛选设施学术带头人 Cleo Bishop 领导的研究小组发现了一种迫使 BLBC 细胞进入促衰老状态的途径。随后,他们与邓迪大学药物发现组(DDU)的另一个团队合作,开发出了促进细胞衰老的工具分子。邓迪大学药物发现小组成员。资料来源:邓迪大学目前,其他地方正在开发药物疗法,以打出消灭细胞的"第二拳"。毕晓普教授说:"目前,治疗蓝细胞白血病最常见的方法是手术和不成熟的化疗方案。因此,由于缺乏量身定制疗法的可能靶点,而且临床过程具有侵袭性,这意味着患有 BLBC 的女性预后特别差。促衰老疗法能激活稳定的细胞周期停滞,阻止肿瘤生长,引发抗肿瘤免疫反应,并使癌症接受称为衰老素的新型治疗方案"。这项研究利用高内涵成像技术从 DDU 的多样性库中识别出工具分子,制药公司 ValiRx 现已选定这些分子进行进一步评估。本月,邓迪大学与该公司签署了一项为期五年的协议。根据该协议,"第一拳"工具分子将率先进入为期 12 个月的评估阶段,如果评估成功,三方将合资成立一家新公司。邓迪大学药物发现部业务发展主管夏洛特-格林(Charlotte Green)说:"近年来,一举两得的方法受到了广泛关注,但目前还没有临床先例,通过与 ValiRx 公司合作推进该项目,我们将引领研究成果向临床转化的方向。"ValiRx 首席执行官 Suzy Dilly 博士说:"邓迪大学和研究设施的实力令人印象深刻,在过去一年中,我们审查了来自邓迪大学团队的多个项目,我们相信,这份评估协议将成为一系列新项目中的第一个,可以纳入我们的管道。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家用最先进的成像技术揭开细胞结构的神秘面纱

科学家用最先进的成像技术揭开细胞结构的神秘面纱 沿纵轴切开并从上方观察的人类中心粒模型。图片来源:© CentrioleLab这种细胞器对细胞骨架的组织至关重要,在功能障碍的情况下与某些癌症、脑部疾病或视网膜疾病有关。这项发表在《细胞》(Cell)杂志上 的研究成果阐明了中心粒组装的复杂性。它还为研究其他细胞器开辟了许多新途径。细胞器的形成是按照连续的蛋白质招募事件的精确序列进行的。通过实时观察这种组装过程,可以更好地了解这些蛋白质在细胞器结构或功能中的作用。然而,要获得具有足够分辨率的视频序列来分辨如此复杂的显微元件,却面临着许多技术限制。为更好地观察细胞而充气中心粒尤其如此,这个尺寸不到 500 纳米(千分之五毫米)的细胞器由大约 100 种不同的蛋白质组成,分为六个亚结构域。直到几年前,人们还无法看到中心粒结构的细节。联合国大学理学院分子和细胞生物学系联合研究主任保罗-吉夏尔(Paul Guichard)和维吉妮-哈梅尔(Virginie Hamel)的实验室利用膨胀显微镜技术改变了这一局面。这项尖端技术可以使细胞及其成分在不变形的情况下逐渐膨胀,这样就可以使用传统显微镜以极高的分辨率对它们进行观察。以如此高的分辨率获取中心粒图像可以确定蛋白质在特定时间的确切位置,但却无法提供关于亚结构域或单个蛋白质出现顺序的信息。该研究的第一作者、前联合国工程师学会研究和教学人员 Marine Laporte 利用膨胀显微镜分析了一千多个中心粒在不同生长阶段的六个结构域中 24 种蛋白质的位置。重组图片,让它们运转起来"在这项非常繁琐的工作之后,我们进行了伪时间运动学重建。换句话说,我们能够将中心粒生物发生过程中随机拍摄的数千张图像按时间顺序排列起来,利用我们开发的计算机分析方法重建中心粒亚结构形成的各个阶段,"这项研究的共同负责人维吉妮-哈梅尔解释说。这种独特的方法结合了极高分辨率的膨胀显微镜和运动学重建,使我们能够首次建立人类中心粒的 4D 组装模型。保罗-吉夏尔总结说:"我们的工作不仅加深了我们对中心粒形成的理解,还为细胞和分子生物学开辟了令人难以置信的前景,因为这种方法可以应用于其他大分子和细胞结构,研究它们在空间和时间维度上的组装。"编译自/scitechdaily ... PC版: 手机版:

封面图片

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞 艺术家们利用显微镜图像和图形渲染,展示了一个能够感知定向化学线索并自我组织响应的最小合成细胞。图片来源:约翰-霍普金斯大学医学院井上实验室,由 Shiva Razavi 和 Turhan Pathan 创作,经编辑了解对称性破坏细胞运动之前的一个步骤是打破对称,当细胞分子最初对称排列时,通常在受到刺激后重组为不对称的模式或形状。这类似于迁徙的鸟类在对阳光或地标等环境指南针做出反应时转变为新的队形,从而打破对称。在微观层面上,免疫细胞会感知集中在感染部位的化学信号,并打破对称,穿过血管壁到达受感染的组织。当细胞打破对称性时,它们会转变为极化和不对称结构,为向目标移动做好准备。"对称性破缺的概念对生命至关重要,影响着生物学、物理学和宇宙学等多个领域,"在约翰-霍普金斯大学攻读研究生时领导这项研究的希瓦-拉扎维(Shiva Razavi)博士说,他在约翰霍普金斯大学攻读研究生时领导了这项研究,现在是麻省理工学院的博士后研究员。"了解对称性破缺是解开生物学基本原理和发现如何利用这些信息来设计治疗方法的关键。"长期以来,人们一直认为找到在合成细胞中模仿和控制对称性破坏的方法对于了解细胞如何检测其化学环境并重新排列其化学轮廓和形状至关重要。在这项研究中,科学家们创造了一个带有双层膜的巨大囊泡一个由磷脂、纯化蛋白质、盐和提供能量的 ATP 组成的裸体简化合成细胞或原细胞。原细胞呈球形,因此被昵称为"泡泡"。在实验中,科学家们成功地设计出了具有化学感应能力的原细胞,它能促使细胞打破对称性,从一个近乎完美的球体变成一个凹凸不平的形状。研究人员说,该系统专门设计用于模仿免疫反应的第一步,能够根据中性粒细胞感知到的周围蛋白质发出攻击病菌的信号。拉扎维说:"我们的研究展示了类细胞实体如何能够感知外部化学线索的方向,模拟生物体内的条件。通过从零开始构建类细胞结构,我们可以更好地识别和理解细胞以最简化的形式打破对称性所需的基本组成部分。"给药领域的未来应用科学家们说,有朝一日,化学传感可用于体内靶向给药。约翰-霍普金斯大学医学院细胞生物学教授、细胞动力学中心主任、资深作者井上隆成(Takanari Inoue)博士说:"我们的想法是,可以把任何你想要的东西蛋白质、RNA、DNA、染料或小分子打包到这些气泡中,利用化学传感告诉细胞该去哪里,然后让细胞在预定目标附近破裂,这样药物就能被释放出来。"为了激活囊泡的化学感应能力,研究人员在合成细胞中植入了两种作为分子开关的蛋白质FKBP和FRB。蛋白质 FKBP 被置于细胞中心,而 FRB 则被置于细胞膜上。当科学家们在气泡细胞外引入一种化学物质雷帕霉素时,FKBP就会移动到细胞膜上与FRB结合,从而引发一种叫做肌动蛋白聚合的过程,也就是合成细胞骨架的重组。在原细胞内部,化学反应产生了由肌动蛋白组成的杆状结构,对细胞膜施加压力,使其弯曲。研究人员使用了一种名为共聚焦显微镜的专门快速三维成像技术来记录原细胞的化学感应能力;他们必须以每15到30秒一帧的速度快速记录图像,因为原细胞会对化学信号做出快速反应。下一步,研究人员的目标是让这些合成细胞具备向所需目标移动的能力。最终,研究人员希望设计出的合成细胞能在靶向药物输送、环境传感以及其他需要精确移动和对刺激做出反应的领域中发挥重要的潜在应用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家正尝试将水熊虫蛋白植入人类细胞

科学家正尝试将水熊虫蛋白植入人类细胞 怀俄明大学的研究人员领导的一项新研究发现,在人体细胞中表达关键的水熊虫蛋白会减缓新陈代谢,这为了解这些难以被杀死的无脊椎动物如何在最极端的条件下生存提供了重要的启示。研究小组重点研究了一种名为CAHS D的特殊蛋白质,众所周知,这种蛋白质可以防止极端干燥(脱水)。通过各种方法,研究人员展示了 CAHS D 在受到压力时如何转变成凝胶状,从而保护分子并防止干燥。研究人员在发表的论文中写道:"这项研究深入揭示了水熊虫以及其他潜在的耐干燥生物是如何利用生物分子凝结在干燥环境中存活下来的。除了应激耐受性,我们的研究结果还提供了一条途径,可以围绕诱导细胞甚至整个生物体的生物稳态来开发技术,从而延缓衰老并增强储存和稳定性。"迟发型生物已经证明,它们可以在酷热和严寒的环境中生存,可以在对人类致命的高辐射环境中生存,也可以在长期缺水的环境中生存水通常是生命的必需品。它们甚至可以在太空中生存。先前的研究揭示了水熊虫历经数亿年积累起来的令人印象深刻的生存技巧。从根本上说,在 CAHS D 的帮助下,它们非常善于减缓生命进程,而这对人类细胞也可能有用。怀俄明大学的分子生物学家西尔维娅-桑切斯-马丁内斯说:"令人惊讶的是,当我们将这些蛋白质引入人体细胞时,它们会凝胶化,减缓新陈代谢,就像在水熊虫体内一样。当把含有这些蛋白质的人类细胞置于生物静止状态时,它们会变得更能抵抗压力,从而把水熊虫的一些能力赋予人类细胞。"在未来的某一天,我们也许能找到方法,将这种惊人的水熊虫复原力传递给我们自己的细胞和组织,从而有可能减缓生物衰老,并有助于在低温条件下安全储存细胞的治疗,例如器官移植。要利用这种能力的转移,还需要大量的进一步研究,目前已经在进行一些研究,探讨水熊虫蛋白能否稳定用于治疗遗传疾病的重要血液制品。早期迹象表明,在多个领域,包括当环境压力存在时,这种蛋白质会被智能地激活,而当环境压力不存在时,这种蛋白质又会失活。怀俄明大学分子生物学家托马斯-布斯比(Thomas Boothby)说:"当压力得到缓解时,水熊虫凝胶就会溶解,人体细胞就会恢复正常的新陈代谢。"这项研究发表在《蛋白质科学》上。 ... PC版: 手机版:

封面图片

钙过量 - 科学家开发出杀死癌细胞的新方法

钙过量 - 科学家开发出杀死癌细胞的新方法 钙离子在细胞功能中起着至关重要的作用,但如果钙离子含量过高,就会对细胞造成危害。研究人员最近开发出一种化合物,可通过调节细胞内的钙离子流入来靶向摧毁肿瘤细胞。这种创新方法利用了肿瘤组织内已有的钙离子,无需外部钙源。《Angewandte Chemie》杂志上发表的一篇论文详细介绍了这一研究成果。生物细胞需要钙离子来维持线粒体(细胞的动力室)的正常运转。然而,如果钙离子过多,线粒体过程就会失衡,细胞就会窒息。由韩国首尔梨花女子大学的尹珠英(Juyoung Yoon)领导的研究小组与来自中国的研究小组一起,利用这一过程开发出了一种协同抗肿瘤药物,它可以打开钙离子通道,从而在肿瘤细胞内引发致命的钙离子风暴。研究人员瞄准了两个通道,第一个是外膜上的通道,另一个是内质网中的钙通道,内质网也是一个储存钙离子的细胞器。位于外膜的通道在暴露于大量活性氧(ROS)时打开,而内质网中的通道则被一氧化氮分子激活。为了产生能打开外膜钙通道的 ROS,研究人员使用了染料吲哚菁绿。这种生物活性剂可通过近红外线照射激活,不仅能引发导致 ROS 的反应,还能使环境升温。研究小组解释说,局部高温会激活另一种活性剂 BNN-6 释放一氧化氮分子,从而打开内质网中的通道。在肿瘤细胞系试验成功后,研究小组又在植入肿瘤的小鼠体内测试了一种注射制剂。为了创造出一种生物兼容的复合药物,研究人员将活性成分装入了微小的改性多孔硅珠中,这种硅珠对人体无害,但能被肿瘤细胞识别并转运到细胞内。将这些微珠注入小鼠血液后,研究人员观察到药物在肿瘤内积聚。照射近红外线成功地触发了作用机制,接受这种制剂的小鼠几天后肿瘤就消失了。作者强调,这种离子流入方法可能也适用于相关的生物医学研究领域,因为类似的机制可以激活不同于钙离子通道的离子通道,从而找到新的治疗方法。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家通过基因编辑诱使癌细胞自毁

科学家通过基因编辑诱使癌细胞自毁 创新的关键在于引入了两个新的"开关"。第一个开关能使改造细胞在接触某种药物时,超越并主宰癌细胞群的其他部分。第二个开关会释放一种毒素,杀死现在占主导地位的改造细胞及其未改造的邻近细胞。发表在《自然-生物技术》(Nature Biotechnology)上的一项研究强调,这种"双开关选择基因驱动"方法解决了现有癌症治疗方法的核心难题。一些癌细胞不可避免地会进化出抗药性机制,从而在治疗中存活下来。细胞可能会使药物失活,关闭药物靶向的通路,或做出其他分子改变以维持生命。为了应对这种情况,医生通常会使用多种药物组合,以不同的方式攻击肿瘤。然而,这些选择是有限的,尤其是对于缺乏有效治疗靶点的难治癌症。新技术采用了一种截然不同的方法。它不是寻找新的药物或靶点,而是利用肿瘤快速进化的能力来对付它。在概念验证实验中,研究人员使用了肺癌细胞和药物厄洛替尼。通常,厄洛替尼是通过阻断表皮生长因子受体蛋白的活化来发挥作用的,而表皮生长因子受体蛋白是细胞不受控制生长的驱动力。然而,科学家们改造了肺癌细胞,通过第一个"自杀基因"来逆转厄洛替尼的作用,使细胞产生抗药性,并在接触药物后迅速增殖。将厄洛替尼应用于混合修饰和未修饰的癌细胞,可使经过编辑的细胞迅速成为肿瘤样本中的主要群体。一旦达到这种效果,研究人员就停止给药。然后,他们用一种名为 5-FC 的无害化合物激活了第二个"自杀基因"。这种基因能表达一种酶,将 5-FC 转化为剧毒抗癌药物 5-FU。由于被编辑的细胞现在占了肿瘤的大部分,释放的毒素有效地杀死了整个癌细胞群。研究人员在患有非小细胞肺癌(最常见的肺癌类型)的小鼠身上测试了这种方法,发现经过改造的细胞在20天内就超越了原来的肿瘤。到第80天,肿瘤完全消退。研究小组目前正努力在其他癌症类型和药物组合上测试这种方法。如果试验成功,它将为战胜癌症提供一种新方法。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人