ALMA对NGC 253的观测揭示了星爆星系的分子多样性和恒星形成演化过程

ALMA对NGC 253的观测揭示了星爆星系的分子多样性和恒星形成演化过程 由欧洲南方天文台/ALMA 联合天文台的塞尔吉奥-马丁(Sergio Martin)、日本国家天文台的原田七濑(Nanase Harada)和美国国家射电天文台的杰夫-曼格姆(Jeff Mangum)领导的研究小组利用 ALMA(阿塔卡马大毫米波/亚毫米波阵列)观测了一个名为 NGC 253 的星系的中心。NGC 253位于雕刻星系方向大约1000万光年之外。NGC 253是星爆星系的一个例子,在这个星系中,许多新恒星正在迅速形成。导致星爆发生的因素至今仍不十分清楚。不同颜色代表分子气体(蓝色)、休克区(红色)、相对高密度区(橙色)、年轻星爆(黄色)、成熟星爆(洋红色)以及受宇宙射线电离影响的分子气体(青色)的分布。资料来源:ALMA (ESO/NAOJ/NRAO), N. Harada et al.恒星的诞生、演化和死亡会改变周围气体的分子组成。ALMA 的高灵敏度和高分辨率使天文学家能够确定表明恒星生命周期各个阶段的分子位置。这项名为ALCHEMI(ALMA全面高分辨率河外星系分子清单)的观测发现,高密度分子气体很可能正在促进这个星系中恒星的形成。NGC 253中心的高密度气体数量比银河系中心的高出10倍以上,这可以解释为什么NGC 253形成恒星的效率要高出30倍左右。ALCHEMI 勘测还提供了一个包含 44 种分子的图集,比之前在银河系外的研究中提供的数量翻了一番。通过对该图集应用机器学习技术,研究人员能够确定哪些分子是追溯恒星形成过程从开始到结束的最佳路标。这些知识将有助于规划未来的ALMA观测。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据 类星体研究取得突破由北海道大学的德拉甘-萨拉克(Dragan Salak)助理教授、筑波大学的桥本拓也(Takuya Hashimoto)助理教授和早稻田大学的井上明夫(Akio Inoue)教授领导的研究小组首次发现了宇宙早期类星体宿主星系中的分子气体外流抑制恒星形成的证据。他们利用智利阿塔卡马大型毫米波/亚毫米波阵列(ALMA)进行的观测结果发表在《天体物理学报》上。从类星体 J2054-0005 喷出的分子气体的艺术印象。资料来源:ALMA (ESO/NAOJ/NRAO)分子气体在星系中的作用分子气体对恒星的形成至关重要。作为恒星形成的主要燃料,星系内无处不在的高浓度分子气体会导致大量恒星的形成。分子外流将这些气体喷射到星系际空间的速度快于恒星形成所消耗的速度,从而有效地抑制了类星体所在星系中恒星的形成。萨拉克解释说:"理论研究表明,分子气体外流从早期就在星系的形成和演化过程中发挥着重要作用,因为它们可以调节恒星的形成。类星体是能量特别高的来源,因此我们预计它们可能会产生强大的外流"。一组正在观测夜空的 ALMA 12 米天线。本研究使用 12 米天线进行观测。资料来源:ESO/Y.Beletsky发现分子气体外流研究人员观测到的类星体 J2054-0005 具有非常高的红移它和地球之间的移动速度显然非常快。桥本说:"J2054-0005 是遥远宇宙中最亮的类星体之一,因此我们决定把这个天体作为研究强大外流的绝佳候选天体。研究人员利用 ALMA 观测了类星体的分子气体外流。作为世界上唯一具有探测早期宇宙中分子气体外流的灵敏度和频率覆盖范围的望远镜,ALMA 是这项研究的关键。"谈到研究中使用的方法,Salak 评论道:"外流分子(OH)气体是通过吸收发现的。这意味着我们观测到的微波辐射并非直接来自OH分子;相反,我们观测到的辐射来自明亮的类星体吸收意味着OH分子恰好吸收了类星体的部分辐射。因此,这就像是通过看到气体在光源前投下的'影子'来揭示气体的存在"。类星体流出的分子气体包括羟基(OH)(上图)。由于分子气体向观测者方向运动,吸收光谱中的羟基峰(底部,蓝色虚线)出现在较短的波长上(蓝色实线),这种现象被称为多普勒效应。资料来源:ALMA(ESO/NAOJ/NRAO),修改自 Dragan Salak 等人,《天体物理学杂志》。2024 年 2 月 1 日对星系演化的影响这项研究的发现首次有力地证明了类星体宿主星系存在强大的分子气体外流,并对早期宇宙时代的星系演化产生影响。"分子气体是星系的重要组成部分,因为它是恒星形成的燃料,"Salak 总结道。"我们的研究结果表明,类星体能够通过将分子气体喷射到星系际空间来抑制其宿主星系中恒星的形成。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃揭示隐藏着恒星形成奥秘的螺旋星系NGC 3059

哈勃揭示隐藏着恒星形成奥秘的螺旋星系NGC 3059 这幅图像中的条状螺旋星系 NGC 3059 位于距离地球 5700 万光年的地方,是利用哈勃太空望远镜的数据和各种滤光片(包括窄带 H-α 滤光片)拍摄的。这种特殊的滤光片通过分离 656.46 纳米波长的 H-α 发射,是识别恒星形成区域的关键,而 H-α 发射是恒星形成过程的一个重要指标。资料来源:欧空局/哈勃和美国国家航空航天局,D. Thilker哈勃于 2024 年 5 月收集了用于合成这张图片的数据,这是一项研究多个星系的观测计划的一部分。所有的观测都使用了相同范围的滤光片:部分透明的材料,只允许非常特定波长的光线通过。滤光片在观测天文学中应用广泛,可以校准成允许极窄或较宽范围的光线通过。从科学的角度来看,窄带滤光片非常宝贵,因为某些波长的光与特定的物理和化学过程有关。例如,在特定条件下,氢原子会发出波长为 656.46 纳米的红光。这种波长的红光被称为 H-α 发射或"H-α 线"。它对天文学家非常有用,因为它的存在可以作为某些物理过程和条件的指标;例如,它通常是新恒星形成的预兆。因此,经校准允许 H-α 发射通过的窄带滤光片可用于识别恒星正在形成的空间区域。这幅图像就使用了这种滤光镜,即被称为 F657N 或 H-α 滤光镜的窄带滤光镜。F 代表滤波器,N 代表窄。数值指的是滤光片允许通过的峰值波长(以纳米为单位)。眼尖的朋友可能已经注意到,657 非常接近 656.46 H-α 线的波长。使用其他五个滤光片收集的数据也为这幅图像做出了贡献,所有这些滤光片都是宽带滤光片;这意味着它们允许更宽波长范围的光通过。这对于识别极其特殊的光线(如 H-α 线)作用不大,但仍能让天文学家探索电磁波谱中相对特殊的部分。此外,将多个滤光片的信息汇总在一起,还可以制作出像这样美丽的图像。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的 从这张哈勃太空望远镜拍摄的图片中可以看到,AM 1054-325 星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了 S 形。这样做的一个后果是,新生的恒星群沿着一条拉长的潮汐尾迹形成,长达数千光年,就像一串珍珠。宾夕法尼亚州立大学的一位天文学家领导的一项新研究锁定了其中的 12 条潮汐尾迹,发现了 425 个星团,每个星团都有多达一百万颗新生恒星。图片来源:NASA、ESA、STScI、Jayanne English(马尼托巴大学)在一项新的研究中,宾夕法尼亚州立大学研究人员领导的研究小组利用美国国家航空航天局的哈勃太空望远镜对12个星系进行了观测,这些星系拥有长长的、像蝌蚪一样的潮汐尾迹,尾部的气体、尘埃和恒星都是在这种碰撞中产生的。研究小组在这些潮汐尾迹发现了 425 个新生恒星星团,每个星团包含多达 100 万颗新生恒星。宾夕法尼亚州立大学天文学和天体物理学教授、研究小组成员简-查尔顿(Jane Charlton)说:"星系合并时,气体云会发生碰撞和坍缩,从而形成一个高压环境,恒星就可能在这个环境中形成。这些合并的内部已经得到了很好的研究,但对于这些合并产生的碎片(如潮汐尾迹)中可能形成恒星的情况却知之甚少"。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流,相互作用的星系之间的引力拉锯战把星系的旋臂拉得像太妃糖的形状一样,沿旋臂尾部的星团看起来就像一串珍珠。天线星系和老鼠星系就是两个具有这种潮汐尾迹的著名星系,它们都有狭长的手指状突起。在新的研究中,研究小组综合利用了新的观测数据和哈勃的档案数据,确定了 12 个潮汐尾迹内星团的年龄和质量。然后,他们利用绕地球运行的两台紫外线太空望远镜的数据确定了恒星形成的速度,其中一台搭载在现已退役的银河进化探测器(Galex)上,另一台搭载在尼尔-盖尔瑞斯-斯威夫特天文台(Neil Gehrels Swift Observatory)上,该天文台的任务运行中心位于宾夕法尼亚州立大学。研究小组发现,许多潮汐尾迹星团都非常年轻只有1000万年的历史。此外,这些星团似乎是以相同的速度沿着绵延数千光年的整个尾部形成的。他们在《皇家天文学会月刊》(Monthly Notices of the Royal Astronomical Society)上发表了他们的研究成果。"在尾部看到大量年轻天体令人惊讶。这告诉了我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院讲师兼基布尔天文台主任迈克尔-罗德鲁克说,他在研究时还是宾夕法尼亚州立大学的一名研究生。"有了潮汐尾尾迹,就会有条件建立起新一代恒星,否则这些恒星可能不会存在"。在合并之前,这些星系中含有大量的分子氢尘埃云,它们可能一直处于惰性状态。在碰撞过程中,这些云相互挤压和碰撞,氢被压缩到一定程度,从而引发了一场恒星诞生的风暴。据研究人员称,这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团,比如那些在银河系平面外运行的星团。或者,它们可能会分散开来,在螺旋星系周围形成一个恒星光环,或者被抛离出去,成为银河系间游荡的恒星。查尔顿说:"我们认为,潮汐的星团可能在宇宙早期更为常见,当时宇宙较小,星系碰撞更为频繁。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

星爆奇观:哈勃对遥远星系核心恒星形成的罕见一瞥

星爆奇观:哈勃对遥远星系核心恒星形成的罕见一瞥 哈勃太空望远镜的高级巡天照相机利用其高分辨率通道拍摄到了这幅NGC 5253星系的详细图像。图片来源:欧空局/哈勃和美国国家航空航天局,W. D. Vacca宽视场通道(WFC),正如它的名字和 ACS 的名字一样,用于勘测遥远而微弱的星系的宽视场,包括著名的哈勃超深视场,而太阳盲通道则通过遮挡阳光来观测木星等行星发出的紫外线。这两个频道目前仍在运行。HRC 是第三个通道,旨在近距离、极其细致地观察天体中心,如星系中心、星团和恒星形成区。它的高分辨率使天文学家能够在一小块区域内分辨出许多恒星,从而深入研究密集区域。NGC 5253 是一个星爆星系,其中充满了非同寻常的星团和不断形成的恒星,是使用 HRC 进行 ACS 分析的完美目标。这张照片详细显示了星系的核心,超级星团就潜伏在黑暗的尘埃云中。这里可以看到银河系更广阔的景象。从安装 ACS 到 2007 年电子故障导致其脱机,HRC 只运行了大约五年。在2009年哈勃最后一次维修任务中,ACS得到了部分修复,但HRC却无法恢复。因此,像这样近距离、高分辨率的星系核心图像非常罕见。编译自/scitechdaily ... PC版: 手机版:

封面图片

天文学家借助年轻恒星周围的水蒸气揭开行星形成的“宇宙秘方”

天文学家借助年轻恒星周围的水蒸气揭开行星形成的“宇宙秘方” 天文观测的突破这些新发现得益于智利阿塔卡马沙漠中的望远镜群阿塔卡马大型毫米波/亚毫米波阵列(ALMA)。曼彻斯特大学的朱德瑞尔班克天体物理中心(Jodrell Bank Centre for Astrophysics)是英国ALMA区域中心节点(UK ARC)的所在地,该中心为使用ALMA的英国天文学家提供支持。曼彻斯特大学高级客座研究员 Anita Richards 博士曾是英国 ARC 的成员,她在验证"波段 5"接收器系统运行的小组中发挥了关键作用,该系统对于 ALMA 生成详细的水图像至关重要。理查兹博士说:"直接测量行星形成过程中的水蒸气含量,让我们更进一步了解制造海洋世界有多容易有多少水是附着在凝结的岩石上,还是主要是后来添加到几乎完全形成的行星上的?这种观测需要最干燥的条件,只有利用智利的 ALMA 阵列才能进行如此详细的观测"。天文学家在一颗年轻恒星周围的圆盘中发现了水蒸气,而这正是行星可能正在形成的地方。在这张图片中,来自阿塔卡马大型毫米波/亚毫米波阵列(ALMA)的新观测数据(ESO 是该阵列的合作伙伴)显示了水蒸气的蓝色色调。在年轻恒星所在的圆盘中心附近,环境温度更高,气体也更明亮。红色的环是 ALMA 之前的观测结果,显示了恒星周围尘埃的分布。资料来源:ALMA (ESO/NAOJ/NRAO)/S.Facchini et al.来自金牛座 HL 星系统的发现发表在《自然-天文学》(Nature Astronomy)杂志上的观测结果表明,在距离地球450光年的金牛座年轻的类太阳恒星HL Tauri的内盘中,水的数量至少是地球所有海洋的三倍。领导这项研究的意大利米兰大学天文学家斯特凡诺-法奇尼说:"我从未想象过,我们能在行星可能形成的同一区域捕捉到水蒸气海洋的图像"。共同作者、意大利博洛尼亚大学天文学家莱昂纳多-特斯蒂补充说:"在距离我们450光年的地方,我们不仅能探测到水蒸气,还能捕捉到详细的图像,并对水蒸气进行空间分辨,这确实非常了不起。"利用ALMA进行的这些观测可以在一千米的距离上显示出像头发丝一样细小的细节,使天文学家能够确定水在圆盘不同区域的分布情况。对行星形成的影响在金牛座 HL 星圆盘存在一个已知缺口的区域发现了大量的水一个行星可能正在形成的地方。在富含气体和尘埃的圆盘上,年轻的类行星天体在聚集物质并成长的过程中,会在圆盘上形成径向间隙。这表明,这些水蒸气可能会影响在这些区域形成的行星的化学成分。但是,用地面望远镜观测水并非易事,因为地球大气中大量的水蒸气会降低天文信号的质量。ALMA 由欧洲南方天文台(ESO)及其国际合作伙伴共同运营,位于海拔约 5000 米的高海拔地区,建在一个高而干燥的环境中,专门用于最大限度地减少这种退化,从而提供了卓越的观测条件。迄今为止,ALMA 是唯一能够绘制冷行星形成圆盘中水分布图的设施。构成圆盘的尘粒是行星形成的种子,它们相互碰撞并聚集成越来越大的天体,围绕恒星运行。天文学家认为,在足够冷的地方,水会冻结在尘粒上,尘粒会更有效地粘在一起这是行星形成的理想场所。英国天文学研究中心(UK ARC)的成员正在为 ALMA 的重大升级做出贡献,ALMA 与欧洲南方天文台(ESO)的超大望远镜(ELT)也将在十年内上线,这将为行星的形成以及水在其中扮演的角色提供更清晰的视角。特别是 METIS(中红外 ELT 成像仪和摄谱仪),它将为天文学家提供行星形成盘内部区域的无与伦比的视角,像地球这样的行星就是在这里形成的。编译自:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭 美国国家航空航天局的哈勃太空望远镜观测到了12个相互作用的星系,发现了富含气体、尘埃和恒星的长潮汐尾迹,沿潮汐尾迹发现了425个新生恒星簇。这些星团每个都包含多达 100 万颗蓝色的新生恒星,它们是星系碰撞的结果,星系碰撞引发了恒星的形成而不是毁灭。从这张哈勃太空望远镜拍摄的图片中可以看到,AM 1054-325 星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了 S 形。这样的一个后果是,新生的恒星群沿着一条延伸数千光年的潮汐尾迹形成,就像一串珍珠。它们的形成是由于气体结在引力作用下坍缩,从而在每个星团中产生了大约 100 万颗新生恒星。资料来源:NASA、ESA、STScI、Jayanne English(马尼托巴大学)与你的想象相反,星系碰撞并不会摧毁恒星。事实上,粗暴和翻滚的动力学引发了新一代恒星的诞生,并可能伴随着行星的诞生。现在,美国国家航空航天局的哈勃太空望远镜已经锁定了12个相互作用的星系,这些星系有着长长的、像蝌蚪一样的潮汐尾巴,尾巴上有气体、尘埃和大量的恒星。哈勃望远镜的锐利度和对紫外线的敏感度发现了这些潮汐尾巴上的 425 个新生恒星星团,看上去就像一串串节日彩灯。每个星团包含多达 100 万颗蓝色的新生恒星。潮汐尾部的星系团已经存在了几十年。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流。触须星系和老鼠星系就是两个广为人知的例子,它们都有狭长的手指状突起。一个天文学家小组结合新的观测数据和档案数据,得到了潮汐尾部星团的年龄和质量。他们发现,这些星团非常年轻只有1000万年的历史。而且它们似乎是以同样的速度沿着绵延数千光年的尾巴形成的。"在尾部看到大量年轻天体是个惊喜。它告诉我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院的迈克尔-罗德鲁克说。"有了潮汐尾部,你就会建立起新一代的恒星,否则这些恒星可能不会存在"。这些尾巴看起来就像是星系的旋臂,并将其伸向太空。旋臂的外部像太妃糖一样被一对相互作用的星系之间的引力拉扯着。在星系合并之前,星系中含有丰富的分子氢尘埃云,这些尘埃云可能一直处于惰性状态。但是,这些氢云在碰撞过程中受到了挤压和撞击。这就把氢压缩到了一定程度,从而引发了一场恒星诞生的风暴。这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团就像那些在银河系平面外运行的星团一样。或者,它们可能会分散开来,在宿主星系周围形成一个恒星光环,或者被抛弃,成为星系间的流浪恒星。在宇宙早期,星系之间的碰撞更为频繁,这种串珠状恒星形成可能更为常见。哈勃观测到的这些附近的星系是很久以前发生的事情的代表,因此是研究遥远过去的实验室。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人