在河南县城“钻石卖得像白菜”

在河南县城“钻石卖得像白菜” 图片来源于网络其实,河南不仅种农作物有一手,“种钻石”也有些年头了,全球 80% 的人造钻石都来自河南,尤其以商丘市柘城县最为集中。人工培育的钻石,是真的钻石吗?“钻石恒久远,一颗永流传。”这是大家最耳熟能详的钻石广告,也被视为 20 世纪最成功的广告。因为光彩夺目,又和爱情和婚姻紧紧捆绑,钻石虽然价格昂贵,却一直活跃在大家的目光中。那如果钻石既能依旧闪耀,价格又远低于现在的价位,是不是非常理想?这时候,就需要人工培育钻石登场了。培育钻石的英文名是“lab grown diamond”,直译过来是实验室里培育出来的人工钻石。它们到底是不是真的钻石?当然是!钻石是宝石级别的金刚石,成分是近乎纯的碳,是石墨等碳物质的同素异形体。在钻石晶体内部,每个碳原子都与周围的四个碳原子紧密结合,形成一种在其他矿物中都不曾见到的特殊三维结构,正是这种致密结构使得钻石成为自然界最坚硬的矿物。钻石和石墨的结构对比。二者都由碳原子组成,这也是我们能用石墨制造钻石的原因。图片来源:wikimedia培育钻石和天然钻石一样,都是纯碳原子构成的晶体,二者的晶体结构、物理性质、化学性质、光学性质本质上没有区别。有专家生动地形容这二者,“天然和人工的区别,就好比河流里的冰跟冰箱里的冰的区别。”人工培育钻石,是可以得到钻石行业三大鉴定机构发放证书的,足见它的真钻地位得到了官方认可。2018 年,美国联邦贸易委员会对钻石定义进行了调整,首次把培育钻石归到了钻石的大类。钻石到底是怎么种出来的?天然钻石埋藏在地球深处。它是含碳矿物和一定比例的铁族金属,在无氧环境中,900℃~1400℃ 的高温和 5~6 GPa的高压下,经过数亿年才能形成。天然钻石形成时间漫长,获取成本高昂。而人工培育的钻石,只需要数周,甚至几天时间即可生成宝石级的钻石。目前,培育钻石的方法主要有两种:一是高温高压技术(High Temperature and High Pressure,HPHT);二是化学气相沉积法(Chemical Vapor Deposition,CVD)。高温高压技术,是中国的主流钻石培植技术,尤其集中在河南,主要仪器是六面顶压机。其合成经过是,将包裹有石墨粉、钻石晶种和金属触媒的石墨柱,放入超高温、高压的反应仓内,石墨粉经过金属触媒粉催化,在晶种上结晶。钻石以晶种为中心慢慢长大,一周左右即可生成,最后经过打磨,切割,变成闪亮的新钻石。利用了高温高压技术的BARS系统示意图。图片来源:wikimedia化学气相沉积技术,目前是欧美国家主要使用的方法。它的基本经过是:在高温、低压的真空环境下,把钻石晶种、含碳气体一起放入反应仓内,分解出气体中的活性碳原子,并通过控制生长条件,使活性碳原子均匀地沉积到天然钻石薄片上,形成新的钻石。两周后,钻石薄片可以有原来的十倍大。这些被石墨包裹的钻石很粗糙,需要用激光进行修整切割,再抛光,然后就是一颗颗闪闪发亮的钻石了。化学气相沉积技术培养出的钻石原石。图片来源:wikimedia两种培育方法各有利弊,核心技术在于原料配比、生产工艺以及机器。CVD 法培育的钻石,培育周期长,成本较高,颜色不易控制,但纯净度高 ,较适宜 5 克拉以上培育钻石合成。HPHT 法培育的钻石,生长速度快,成本低,但纯净度稍差,且无法培育较大的钻石晶体,适合批量生产 1~5 克拉的钻石毛石。目前,中国、印度、美国分别主导培育钻石生产、加工、零售市场。河南为什么能大量种起了钻石?钻石的原石金刚石起先最重要的作用,不是欣赏,而是用于机械加工。上世纪五十年代,一些欧美国家成功通过高温高压法、化学气相沉积法等方法成功合成了人工金刚石。同一时期,新中国为了发展制造业,开始在全国选址兴建砂轮厂,批量制造磨具。因河南巩义发现了大型铝矾土矿,中国第二砂轮制造厂最终落地于郑州。这个砂轮厂以及厂内的郑州三磨所(磨料磨具磨削研究所),就是之后中国超硬材料的“黄埔军校”。制作磨料磨具需要的核心材料是金刚石。当时中国的金刚石依赖进口,想要加快工业化发展,中国必须研发自己的人造金刚石。带着这样的历史使命,1960 年,郑州三磨所承接了这个国家研究课题。1963 年,中国终于成功研制出本国的第一颗人造金刚石,是继美国、苏联等国之后的第五个国家。但是,有了人造金刚石还不够,想要量产,就必须有制造金刚石的机器。1965 年,郑州三磨所和济南铸造锻压机械研究所一起攻关,最终研发出了我国第一台六面顶压机。六面顶压机的生产效率,是国外两面顶压机的 20 倍。随着这台“功勋压机”的问世,郑州开始成为磨具磨料中心,培养了许多技术人才,奠定了河南在超硬材料的领先地位。中国也由此,开始成为超硬材料的中心,从进口国成为出口国。据统计,河南超硬材料现有规上企业约 300 家,上市公司 7 家。技术人员在探讨生产工艺。图片来源:新华社记者 杨静 摄随着技术的提高,用六面顶压机培育的金刚石,纯度越来越高,很容易达到宝石级别的钻石标准。如今,河南柘城县已经成为中国的“人造钻石之都”,诞生了很多相关的知名企业。性价比高的人工培育钻石市场买不买单?目前,市场上宝石级别的天然钻石,1 克拉售价约 2 万起步。虽然开采成本高是一个因素,但价格居高不下的主要原因,还是钻石资源的垄断。有数据显示,世界上的钻石资源有 70% 掌握在五大钻石制造商手中。他们制定着整个行业的游戏规则,拥有绝对的定价权。但随着人工培育钻石工艺的提高,人造钻石的品质已经可以与天然钻石媲美,且成本据说只有天然钻石的 10% 左右。如此大的利润空间,甚至吸引了像戴比尔斯、施华洛世奇等传统珠宝巨头纷纷开始布局人造钻石市场,LVMH 和 GUCCI 这类奢侈品牌也开始投资相关项目。对于收藏级别的钻石而言,天然和稀缺性是价值的关键,但作为普通生活中佩戴的饰品而言,人造钻石因其极高的性价比,逐渐被消费者认知,市场前景广阔。消费者在选购人造金刚石饰品。图片来源:新华社记者 杨静 摄很多人关心,戴培育钻石能不能被人看出来?肉眼完全看不出来,无论是从火彩、净度、颜色,它都和真钻一样,只有通过大型仪器,检测二者的光谱才能识别出不同。随着培育钻石工业化的发展,人工钻石的价格还将有所降低。除了作为宝石观赏人工培育钻石有更广阔前景看起来只能当艺术品的美丽钻石,其实在工业领域运用非常广泛,更是被称为“工业牙齿”。因为具有极高的硬度,钻石长期被使用在小到玻璃切割、手工研磨、机床工具,大到石油与天然气钻井、地质勘探、煤炭及矿物采掘、新能源等生产领域。除此之外,钻石本身化学性质稳定,耐受酸性和碱性,还有极高的导热性,被视为是比“硅”更环保,更高效,更理想的终极半导体材料。当前,市面上绝大部分的半导体材料使用的是硅。但硅有一些弱点容易发热,且冷却效率低下,还是电子垃圾的主要来源。而钻石则完全没有这些问题。钻石半导体能够提高功率密度,还可以制造出更快、更轻、更简单的设备。人工培育钻石未来很重要的一个布局是,在光学、热学及半导体研究上得到应用。 ... PC版: 手机版:

相关推荐

封面图片

超级计算机破解超级钻石合成密码

超级计算机破解超级钻石合成密码 超级计算机模拟预测了难以捉摸的 BC8"超级金刚石"的合成途径,其中涉及金刚石前驱体的冲击压缩,为正在 NIF 进行的"发现科学"实验提供了灵感。资料来源:Mark Meamber/LLNL钻石是已知最坚硬的材料。然而,据预测,另一种形式的碳甚至比钻石更坚硬。挑战在于如何在地球上制造它。八原子体心立方(BC8)晶体是一种独特的碳相:不是金刚石,但非常相似。据预测,BC8 是一种更坚固的材料,其抗压性能比金刚石高出 30%。据信,富碳系外行星的中心就有这种晶体。如果能在环境条件下回收 BC8,它就可以被归类为超级钻石。理论启示与实验挑战根据理论预测,在超过 1000 万个大气压的压力下,这种碳的结晶高压相是最稳定的碳相。南佛罗里达大学(USF)物理学教授、最近发表在《物理化学通讯》(The Journal of Physical Chemistry Letters)上的一篇论文的资深作者伊万-奥利尼克(Ivan Oleynik)说:"在环境条件下,碳的BC8相将是一种新的超硬材料,可能比金刚石更坚硬。"地外联系劳伦斯利弗莫尔国家实验室(LLNL)科学家马里乌斯-米洛特(Marius Millot)说:"尽管为合成这种难以捉摸的碳晶相做出了无数努力,包括之前的国家点火装置(NIF)活动,但至今仍未观测到这种碳晶相。"但我们相信,富碳系外行星中可能存在这种物质。"最近的天体物理观测表明,系外行星中可能存在富碳行星。这些天体具有相当大的质量,在其内部深处承受着高达数百万个大气压的巨大压力。了解 BC8 的独特性能Oleynik说:"因此,这些富碳系外行星内部的极端条件可能会产生钻石和BC8等碳的结构形式。因此,深入了解BC8碳相的特性对于开发这些系外行星的精确内部模型至关重要。"BC8 是硅和锗的高压相,可在环境条件下恢复,理论表明 BC8 碳也应在环境条件下保持稳定。 LLNL 科学家兼合著者 Jon Eggert 说,钻石之所以如此坚硬,最重要的原因是钻石结构中四个最近邻原子的四面体形状与元素周期表中第 14 列元素(从碳开始,然后是硅和锗)中四个价电子的最佳配置完全吻合。合成 BC8 的途径埃格特说:"BC8结构保持了这种完美的四面体近邻形状,但没有钻石结构中的裂隙面,"他同意奥莱尼克的观点,"在环境条件下,BC8碳相可能比钻石更坚硬"。通过在全球速度最快的超大规模超级计算机"Frontier"上进行数百万次原子分子动力学模拟,研究小组发现了金刚石在极高压下的极端陨变性,大大超出了其热力学稳定性范围。成功的关键在于开发出了非常精确的机器学习原子间势,它能在各种高压和高温条件下以前所未有的量子精度描述单个原子之间的相互作用。Oleynik说:"通过在基于GPU(图形处理单元)的前沿技术上高效地实现这一潜能,我们现在可以在实验时间和长度尺度的极端条件下精确地模拟数十亿碳原子的时间演化。我们预测,只有在碳相图的一个狭窄的高压、高温区域内,才能通过实验获得后金刚石 BC8 相。"BC8 研究的未来前景其意义是双重的。首先,它阐明了以往实验无法合成和观察难以捉摸的 BC8 碳相的原因。这一限制源于 BC8 只能在非常狭窄的压力和温度范围内合成。此外,该研究还预测了可行的压缩途径,以进入这一高度受限的领域,从而实现 BC8 的合成。目前,Oleynik、Eggert、Millot 和其他人正在合作,利用 NIF 上的"发现科学"镜头分配来探索这些理论途径。该团队梦想着有一天能在实验室中培育出 BC8 超级金刚石,只要他们能合成这种相,然后将 BC8 种子晶体恢复到环境条件下。编译自:ScitechDaily ... PC版: 手机版:

封面图片

金刚石芯片商用在即 性能优秀成本却高出上万倍

金刚石芯片商用在即 性能优秀成本却高出上万倍 而在氮化镓和碳化硅之后,金刚石也就是钻石,作为一种新半导体材料闯入了大家的视线当中,并引发了研究人员和行业专家的关注。金刚石以其无与伦比的硬度和亮度而闻名,半个多世纪以来,珠宝首饰是它最广泛也是最有价值的用途,如今它又因自己的特性,在半导体材料中开辟了一番广阔的前景。金刚石芯片,有何优势与现有的半导体材料相比,金刚石主要具有三大优势:热管理、成本/效率优化和二氧化碳减排。在所有传统的功率转换器中,冷却系统都是一个必要的累赘。与大多数半导体材料不同,金刚石的电阻率随温度升高而降低。因此,用这种材料制成的设备在 150 摄氏度(功率设备的典型工作温度)下比在室温下性能更好。虽然必须花费大量精力来冷却暴露在高温下的硅或碳化硅器件,但只需让金刚石在运行过程中找到一个稳定的状态即可。金刚石还是一种良好的散热器。由于散热损耗少、散热能力强且能在高温下工作,用金刚石有源器件制成的转换器可以比基于硅的解决方案轻 5 倍、小 5 倍,比基于碳化硅的解决方案轻 3 倍、小 3 倍。在设计设备和转换器时,必须在系统的能效与成本、尺寸和重量之间做出权衡。金刚石也不例外,但金刚石能在关键参数上为更节能的电动汽车带来价值。如果重点是降低设备成本,那么可以设计出比碳化硅芯片成本低 30% 的金刚石芯片,因为在电气性能和效率相同的情况下,金刚石芯片比同等的碳化硅芯片少消耗 50 倍的金刚石面积,而且热管理更好。如果注重效率,金刚石与碳化硅相比,可将能量损耗降低三倍,芯片体积最多可缩小 4 倍,从而直接节省能耗。如果侧重于系统体积和重量,通过提高开关频率,金刚石器件可将无源元件的体积比基于碳化硅的转换器减少四倍。除了体积上的减少之外,还可以通过缩小散热器来实现。值得一提的是,金刚石还具备极高的绝缘性。衡量不同材料绝缘性好坏的一大重要指标是击穿电场强度,表示材料能承受的最大电压不造成电击穿。作为对比,硅材料的击穿电场强度为0.3 MV/cm左右,SiC为3 MV/cm,GaN为5 MV/cm,而钻石则为10 MV/cm,而且即使是非常薄的钻石切片也具有非常高的电绝缘性,能够抵抗非常高的电压。从具体用途来看,金刚石基板具有优异的导热性,可为高功率 5G 元件(基站、放大器)实现高效散热,确保运行稳定性并防止过热。5G 基础设施的不断推出和对更快数据速度的无限需求,推动了各种 5G 相关设备对金刚石基板的采用。5G 数据流量的指数级增长意味着需要设备能够管理在极高频率下产生的大功率密度。金刚石衬底为这些问题提供了答案。此外,与传统的硅基解决方案相比,金刚石衬底与氮化镓或碳化硅配对,可制造出工作电压更高、频率更高、能效更高的功率器件,电动汽车、用于可再生能源的电源逆变器、工业电机驱动器、大功率激光器和先进电源都是金刚石衬底应用日益广泛的领域。金刚石衬底作为出色的散热器,可以延长这些设备的使用寿命和可靠性。而随着向更清洁能源的过渡和汽车电气化进程的加快,金刚石衬底也将发挥至关重要的作用。尽量减少功率转换过程中的能量损耗可以提高整体效率,这是电动汽车和可持续电网的一个重要方面。金刚石基底能够设计出更紧凑、重量更轻的电力电子器件,这对电动汽车等空间受限的应用至关重要。国外的Virtuemarket的数据指出,2023年全球金刚石半导体基材市场价值为1.51亿美元,预计到2030年底市场规模将达到3.42亿美元。在2024-2030年的预测期内,该市场预计将以复合年增长率增长12.3%。其认为,在中国、日本和韩国等国家电子和半导体行业不断增长的需求的推动下,亚太地区预计将主导金刚石半导体衬底市场,到 2023 年将占全球收入份额的 40% 以上。金刚石芯片,面临挑战当然,性能如此优秀的半导体材料,在其他方面不免受到一些限制。首先就是成本。与硅相比,碳化硅的成本是其 30 到 40 倍,而氮化镓的成本是其 650 到 1300 倍。用于半导体研究的合成金刚石材料的价格约为硅的 10000 倍。另一个问题是金刚石晶片尺寸太小,市场上最大的金刚石晶片尺寸还不到 10 平方毫米。使用离子注入法掺杂这种材料很困难,而且这种材料的电荷载流子活化效率在室温下会降低。为了解决生产应用方面的问题,不少公司都在努力攻关金刚石量产的相关技术。2023年初,日本佐贺大学与日本Orbray共同合作开发了金刚石制成的功率半导体,他们在蓝宝石衬底上制成2英寸的单晶圆,2023年10月,美国的Diamond Foundry于成功制造出了世界上第一块单晶钻石晶圆,直径约4英寸。除了上述两家公司外,位于法国格勒诺布尔的半导体金刚石初创公司Diamfab也在为了金刚石芯片的技术而不断努力。今年3月,该公司宣布获得870万欧元的首轮融资。这笔资金来自Asterion Ventures、法国政府代表法国政府管理的法国科技种子基金(法国2030的一部分)、Kreaxi与Avenir Industrie Auvergne-Rhône-Alpes地区基金、Better Angle、Hello Tomorrow和格勒诺布尔阿尔卑斯大区。Diamfab 是法国国家科学研究中心(CNRS)实验室奈尔研究所(Institut Néel)的衍生产品,也是 30 年来合成金刚石生长研发的成果。Diamfab 项目最初在格勒诺布尔阿尔卑斯 SATT Linksium 进行孵化,该公司于 2019 年 3 月成立,由两位纳米电子学博士和半导体金刚石领域公认的研究人员 Gauthier Chicot 和 Khaled Driche 创办。Diamfab表示,为了满足汽车、可再生能源和量子产业的半导体和功率元件市场需求,公司在合成金刚石的外延和掺杂领域开发出了突破性技术。其在合成金刚石的外延和掺杂领域开发出了突破性技术,并拥有四项专利,其专长在于薄金刚石层的生长和掺杂,以及金刚石电子元件的设计。第一轮融资将使 Diamfab 能够建立一条试验生产线,对其技术进行工业化前处理,加速其发展,从而满足对金刚石半导体日益增长的需求。Diamfab此前已经申请了全金刚石电容器的专利,并正在与该领域的领先企业合作, Diamfab 首席执行官 Gauthier Chicot 说道:“在其他参数中,我们已经实现了我们的目标:超过 1000A/cm2 的高电流密度和大于 7.7MV/cm 的击穿电场。这些是未来设备性能的关键参数,并且已经优于 SiC 等现有材料为电力电子设备提供的参数。此外,我们有一个明确的路线图,到 2025 年实现 4 英寸晶圆,作为大规模生产的关键推动因素。”“在过去的两年中,我们在与研发团队合作加工高附加值金刚石晶片方面取得了重大进展。现在,我们基于双重业务模式的应用导向方法将使我们能够与更广泛的工业合作伙伴合作,开发和销售高附加值金刚石晶片和我们的专利金刚石设备制造工艺,同时还能以轻型工厂模式直接向最终用户销售产品,”Chicot 说。“在像我们这样的尖端产业的发展过程中,每个阶段都至关重要。试点项目将促进我们与合作伙伴的许多讨论,并加强我们之间的关系。与致力于该行业和气候的投资者合作,最重要的是他们了解该行业的制约因素和联系,这一点至关重要,” Chicot表示。“我们开发的技术可以大大减少半导体的历史碳足迹,并通过转移欧洲的关键产业来实现这一目标,这也是我们与 Asterion 合作的投资重点之一,”负责此次交易的 Asterion Ventures 合伙人 Charles-Henry Choel 解释说,“工业深度技术公司需要冷静、长期的支持,而这正是我们所能提供的。”无独有偶,美国的Advent Diamond也是这样一家致力于将金刚... PC版: 手机版:

封面图片

金刚石纳米膜可使电子设备的温度降低10倍 充电速度提高5倍

金刚石纳米膜可使电子设备的温度降低10倍 充电速度提高5倍 热量通常是电的一种不幸的副作用,过多的热量会损坏元件和设备,有时甚至会造成危险。因此,管理和消除热量是电子设计的一个主要考虑因素,散热器通常由铜或铝制成。问题是,这些金属也是良好的导电体,因此通常还需要另一个绝缘层。因此,在这项新研究中,弗劳恩霍夫研究小组转向了金刚石,因为金刚石是热的优良导体,但却是电的绝缘体。该项目的科学家马蒂亚斯-米勒(Matthias Mühle)说:"我们希望用我们的金刚石纳米膜取代中间层,因为金刚石可以被加工成导电路径,所以它能非常有效地将热量传递到铜上。由于我们的膜是柔性的、独立的,它可以放置在元件或铜的任何位置,也可以直接集成到冷却电路中。"研究小组的钻石纳米膜样品 弗劳恩霍夫美国中西部中心 CMW金刚石散热器早已经开始投入使用,但其厚度通常超过 2 毫米,很难粘贴到元件上。而纳米膜只有一微米厚,柔韧性好,只要轻轻加热到80 °C(176 °F),就能粘合到电子元件上。研究小组通过在硅晶片上生长多晶金刚石,然后分离和蚀刻金刚石层来制造纳米散热膜。研究人员估计,金刚石纳米膜可将电子元件的热负荷降低 10 倍,这当然会提高这些元件和整个设备的能效和使用寿命。研究小组表示,如果将其应用到充电系统中,这种薄膜可将电动汽车的充电速度提高五倍。也许最重要的是,由于金刚石纳米膜可以在硅晶片上制造,因此制造工艺应该比较容易扩大到工业用途。该团队已经为这项技术申请了专利,并计划于今年晚些时候开始在电动汽车和电信领域的逆变器和变压器中进行测试。 ... PC版: 手机版:

封面图片

韩国研究人员实现在常压下生长钻石 耗时仅15分钟

韩国研究人员实现在常压下生长钻石 耗时仅15分钟 在地球上,唯一具备适当自然条件的地方是地幔深处,在地下数百英里处。只有在火山爆发时,它们才会被带到更接近地表的地方,因此它们非常罕见。再加上历史上一些巧妙的营销手段,这块小石头就变得非常抢手了。几十年来,科学家们一直在实验室中培育人工钻石,但通常仍需要极端条件近 50000 个大气压的压力和约 1500 °C (2,732 °F)的温度。但现在,一种新技术已经在正常压力水平和较低温度下培育出了钻石。这种新方法由韩国基础科学研究所(IBS)和蔚山国立科学技术研究院(UNIST)的一个团队开发,利用一种由镓、铁、镍和硅组成的液态金属合金合成钻石。在一个 9 升(2.4 加仑)的容器中,将这种金属混合物置于温度为 1025 °C (1877 °F)的甲烷和氢气中。15 分钟后,气体从系统中排出,底部会形成一层金刚石薄膜。这层膜可以很容易地剥离出来,用于研究或直接投入工作。通常情况下,合成金刚石技术需要"种子颗粒"让第一批碳原子吸附在周围形成金刚石。但在这种情况下,液态金属中的微量硅似乎有助于碳原子形成簇。最终得到的是非常纯净的钻石。其他金属可以替换使用,但硅似乎对这一过程至关重要。研究人员现在计划研究其他液态金属合金和气体,甚至是固态碳,看看它们能不能制造出钻石。虽然我们不可能很快戴上在液态金属大桶中培育的钻石,但它们可以首先在工业应用中找到用武之地。这项研究发表在《自然》杂志上。 ... PC版: 手机版:

封面图片

培育钻石或将拖垮钻石珠宝业务 戴比尔斯困境之中壮士断腕

培育钻石或将拖垮钻石珠宝业务 戴比尔斯困境之中壮士断腕 创造出“钻石恒久远”这句口号的戴比尔斯,正是观察钻石行业困境的最好窗口。由于市场低迷,戴比尔斯母公司英美资源集团已宣布剥离该公司。英美资源的首席执行官Duncan Wanblad在5月关于公司重组的一次会议上强调,戴比尔斯是很好的资产,但其正处于行业周期的底部,这是宏观经济带来的挑战。当然,这其中也有行业自己的锅。珠宝公司Angara首席执行官Ankur Daga指出,核心问题是实验室生产的钻石正在快速成长。他估计,今年在美国销售的订婚戒指之中,有一半将使用培育钻石。廉价的培育钻石让消费者不再购买钻石及其饰品。Daga进一步解释,过去五十年来,钻石一直被视为一种资产和通胀对冲工具。但随着价格暴跌,这种投资理由已基本消失。基于此,戴比尔斯正在筹备革新。在英美资源集团宣布剥离戴比尔斯之后,戴比尔斯首席执行官Al Cook表示,公司将转向生产用于工业用途的实验室培育钻石,并将其珠宝营销工作重点放在天然开采钻石上。戴比尔斯目前仍有部分培育钻石的库存,大约一年之后可以完全出清。在清完剩余库存之后,戴比尔斯将专注于天然钻石珠宝的销售,誓言重新将“钻石恒久远”这一标语重新根植入消费者心中。培育钻石的冲击与机遇现在的实验室培育钻石技术已经可以在数小时内就生产出符合要求的钻石,而其成本比开采钻石要便宜60-85%,这对消费者来说是十分强大的吸引力。这也导致了国际钻石价格的快速下挫。根据齐姆尼斯基全球毛坯钻石价格指数,钻石价格在今年就下跌了5.9%,而据Daga预测,明年天然钻石价格还将下滑15-20%。作为钻石行业的最大供应商之一,戴比尔斯不得不因为整体钻石需求的下降,大幅降低其钻石售价。去年9月,该公司将价格下调了40%,并在今年年初再降价10%。Cook指出,戴比尔斯知道自己应该做什么,这一切都与一个议题相关,即将天然钻石与培育钻石区分开来。他补充道,合成钻石的长期机遇在于科技领域,其可以被应用于一系列令人兴奋的技术领域,非常适合6G技术、半导体和量子计算机等高价值的行业。专门从事培育钻业务的戴比尔斯子公司Element Six已将三家工厂集中生产,并开始与亚马逊合作研究合成钻石在量子计算之中的应用。此外,Element Six还将与美国国防部合作开发先进的军事通信和电子应用。相关文章:需求疲软、价格暴跌 “钻石恒永久”美梦幻灭? ... PC版: 手机版:

封面图片

科学家对海王星和天王星等冰行星上钻石雨的形成有了新的认识

科学家对海王星和天王星等冰行星上钻石雨的形成有了新的认识 在早先的 X 射线激光研究中,科学家们已经发现,由于大型气体行星内部普遍存在高压,钻石应该是由那里的碳化合物形成的。然后,这些碳化合物会进一步沉入行星内部,成为来自高层的宝石雨。图中显示的是行星内部的钻石雨,它由沉入周围冰层的钻石组成。在深入星球内部的过程中,压力和温度不断升高。即使在温度极高的区域,冰也会因为极高的压力而保留下来。资料来源:欧洲 XFEL / Tobias Wüstefeld欧洲 XFEL 的一项新实验现已表明,碳化合物形成钻石的起始压力和温度都比假设的要低。对于气态行星来说,这意味着钻石雨的形成深度比想象的要低,因此可能会对磁场的形成产生更大的影响。此外,在比海王星和天王星小的气态行星上也有可能形成钻石雨,它们被称为"小海王星"。太阳系中不存在这样的行星,但太阳系外确实存在这样的系外行星。钻石雨在从行星外层流向内层的过程中,会夹带气体和冰,造成导电冰流。导电流体的电流就像一种发电机,行星的磁场就是通过它形成的。弗罗斯特说:"钻石雨可能对天王星和海王星复杂磁场的形成有影响。"欧洲 XFEL 的 HED 实验站。图片来源:European XFEL / Jan Hosan 欧洲 XFEL / Jan Hosan研究小组使用碳氢化合物聚苯乙烯制成的塑料薄膜作为碳源。在极高的压力下,金刚石从薄膜中形成这一过程与行星内部的过程相同,欧洲 XFEL 可以模仿这一过程。研究人员借助金刚石挤压单元和激光,产生了冰气巨行星内部普遍存在的 2200多摄氏度的高压和高温。设施的功能就像一个小型钳子,样品被挤压在两块钻石之间。在欧洲 XFEL X 射线脉冲的帮助下,可以精确观测到挤压中钻石形成的时间、条件和顺序。国际研究团队还包括来自欧洲 XFEL、德国汉堡DESY研究中心和德累斯顿-罗森多夫亥姆霍兹中心的科学家,以及来自不同国家的其他研究机构和大学的科学家。欧洲 XFEL 用户联盟 HIBEF(包括 HZDR 和 DESY 研究中心)为这项工作做出了重大贡献。弗罗斯特说:"通过这项国际合作,我们在欧洲 XFEL 取得了巨大进步,并对冰行星有了新的深刻认识。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人