大连化物所开发出多电子转移高能量密度水系电池

大连化物所开发出多电子转移高能量密度水系电池 溴-碘卤素化合物构建的多电子转移正极。大连化物所供图能量密度和安全性是衡量二次电池的重要标准。传统的非水系锂离子电池尽管具有高的能量密度,但其采用的有机电解液易燃,安全性问题难以保障。水系电池采用水作为溶剂,具有安全性。然而,水系电池的能量密度一般较低,单位体积内的电池储存的电量较少。本工作中,李先锋团队使用碘离子和溴离子混合卤素溶液作为电解液,构建了碘离子(I-)到碘单质(I2)进而到碘酸根(IO3-)的多电子转移反应。其开发的多电子转移正极比容量达840安时/升,该正极与金属镉组成全电池,基于正极侧的能量密度超过1200 瓦时/升。优化后的电解液,溴化物充当了氧化还原的“桥梁”,大幅度提高了电池的效率和反应速率。该研究有望拓宽高能量密度水系电池的研究途径,为高能量密度水系电池的设计提供一种新思路。此外,该研究还拓展了水系电池的应用范围,有望应用在动力电池等领域,为环境保护和能源结构升级提供技术保障。相关论文信息: ... PC版: 手机版:

相关推荐

封面图片

蔚来将于 年第四季度计划交付 kwh 固态电池,采用固态电解液、硅碳复合负极材料、超高镍正极材料,单体能量密度达 Wh/kg。

蔚来将于 年第四季度计划交付 kwh 固态电池,采用固态电解液、硅碳复合负极材料、超高镍正极材料,单体能量密度达 Wh/kg。 据介绍,蔚来全新 ES 届时续航可达到 km,ES 可达到 km,ET 的 NEDC 续航可突破 km,用户可以通过电池灵活升级方案享受该电池。

封面图片

浙大电池新方案登《自然》:10分钟快速充放

浙大电池新方案登《自然》:10分钟快速充放 基于此理念,团队设计出一款新型电解液,不仅能够支持高比能锂离子电池在-70℃到60℃的超宽温区内进行可逆地充放电,还可以使得高能量密度锂离子电池在10分钟内完成快速充放电。范修林研究员介绍,在锂电池中要实现快充的突破,电解液的特性至关重要,而传统电解液中的锂离子传输模式无法实现锂离子的快速迁移。研究团队建立了一套溶剂筛选原则,在几万种溶剂中筛选出23种“潜力溶剂”,配制出多种电解液,制作成锂离子软包电池,展开实证研究。经过长达4年的研究,浙大科研人员最终确定了电解液的最佳配方。相关测试数据表明,范修林团队提出的新型电解液在25℃室温下的离子电导率是目前商用电解液的4倍,在-70℃时高于商用电解液3个数量级以上。范修林认为,当前电池成本较高,可以率先在极地科考、空间探测、海底勘探等极端温度情况中应用。而随着电解液技术的不断攻关迭代,范修林对新型锂离子电池装配到新能源汽车很有信心。 ... PC版: 手机版:

封面图片

水电池有望5年内取代锂离子电池 不会燃爆、可回收再利用

水电池有望5年内取代锂离子电池 不会燃爆、可回收再利用 研究团队目前已经开发出用于钟表的硬币大小的水基电池原型,以及类似于AA或AAA电池的圆柱形电池。电池通过产生从电池的正极(阴极)到负极(阳极)的电子流来储存能量。当电子向相反方向流动时,它们会消耗能量,电池中的液体是用来在两端之间来回传递电子的。在水电池中,电解液是加了一些盐的水,而不是硫酸或锂盐之类的东西。目前,这种电池的使用寿命与市场上的锂离子电池相当,能量密度约为每公斤75瓦时,约为最新款特斯拉汽车电池的30%,未来通过开发新型纳米材料作为电极还有望再次提高能量密度。此外,这种电池制作工艺简单,所用材料在自然界中含量丰富,价格低廉,毒性更低。科学家称,短期1到3年内有望替代铅酸电池,5到10年内有望取代锂离子电池。 ... PC版: 手机版:

封面图片

固态电池,小心被“玩”坏

固态电池,小心被“玩”坏 来源/镜观台拍摄海外市场方面,丰田计划2027年实现全固态电池装车;韩国SKOn正在开发高分子氧化物复合和硫化物两种固态电池,目标是到2026年生产出原型产品,2028年实现商业化;三星SDI正在开发一种没有负极的固态电池,预计将于2027年量产。固态电池的消息满天飞,动力电池的霸主宁德时代也不得不出来发声。宁德时代首席科学家吴凯表示,全固态电池的成熟度指标,若用1-9数字表示,宁德时代目前的成熟度在4的水平,目标到2027年到7-8的水平。简言之,宁德时代的固态电池离量产还尚早。在全固态电池研发方面已有十多年的积累,且有近千人研发团队的宁德时代尚且如此,近一两年量产,甚至宣称已经搭载上车的固态电池,其成色问题就值得商榷了。固态电池虽好,经不起“恶搞”新能源汽车行业发展离不开动力电池,目前的动力电池无论是三元锂电池还是磷酸铁锂,虽然在整车安全、续航里程等方面还在进步,但一定程度上在技术上已经很难有大的突破了。随着锂离子电池成本优化接近极限,新能源汽车产业正迫切寻求技术革新以突破现有瓶颈。固态电池作为下一代电池技术的明星产品,凭借其在安全、能量密度及循环寿命方面的显著优势,被视为推动电动汽车发展的新引擎。所谓固态电池,顾名思义,是和液态电池相对应的,是一种使用固态电极和固态电解质的电池。目前市面上主要的锂离子电池内置是含有液态电解质的。传统液态电池由正极、负极、电解液、隔膜四大部分组成。固态电池用固态电解质替换传统液态电解液和隔膜。固态电池的核心特征就在于使用固态电解质,这也是实现固态电池高能量密度、高循环稳定性、高安全性的关键。其工作机理与传统锂电池一致,依靠锂离子在正极和负极之间往返移动,进行化学能和电能之间的转换与储存。根据液态电解质的含量逐步下降,固态电池发展路径可分为:半固态电池、准固态电池和全固态电池。这也就给了一些车企在宣传上提供了“便利”,第一家、第一款、第一代的修饰语层出不穷。腾势汽车总经理兼首席共创官赵长江也忍不住在微博吐槽“就是在玩文字游戏”。中科院院士、清华大学教授欧阳明高也认为,中国在全固态电池领域的研发,目前来看认识还不统一。显然,过度炒作对固态电池的发展极为不利。事实上,作为全固态电池的过渡方案,半固态电池在性能上已大幅提升,安全性较好、能量密度较高、循环寿命更长、工作温度范围更宽、耐挤压、耐震动等。但从制造工艺来说,半固态电池基本可沿用现有液态电池的制造工艺,生产难度远远小于全固态。液态变固态,换“汤”也换“药”但液态电池要直接升级为固态电池,就需要“改头换面”了。如果把动力电池比作汤药,那电解质可以说是“汤”,正负电极和隔膜可说成是“药”。从液态电池到固态电池,不光是把“汤”换了,液态电解质变成固态,“药”也逐步换了。基于目前固态电池的发展历程,还可以将固态电池的发展分为三个阶段:第一阶段:将传统的电解液换成固态电解质,正负极和传统用的是一样,均采用负极石墨和正极三元锂或磷酸铁锂;第二阶段:更换负极材料,取消掉负极的石墨或硅,使用金属锂来提升能量密度;正极不变,采用磷酸铁锂或者三元材料。第三阶段:正负极都换,负极用金属锂,正极就可以换成不含锂的高能量的材料。如此来看,第一阶段换的就是“汤”,第二三阶段就是把“药”也换掉了。换“汤”比较好理解,固体电解质相对于电解液,电化学范围更广(电压更广),电解质不参与化学反应,让锂离子通过。因此,可以选择容量更大的正极材料,或者选择电压差更大的正负极材料,从而提高能量密度。那为什么要把作为“药”的正负极也更新换代呢?按照目前提高电池能量密度的手段,在正极端不断地提高镍的含量虽然可以提升电池能量密度,但是高镍电池对电池的稳定性要求具备更高的电池管理基础。因此,三元锂短期内要突破一个量级还是有一定的挑战。未来,可能也只有固态电池会将电池能量密度提升一个量级。太蓝新能源就在近日宣布成功制备出世界首块车规级单体容量120Ah,实测能量密度达到720Wh/kg的超高能量密度体型化全固态锂金属电池。作为对比,目前磷酸铁锂电池的能量密度为160-180wh/kg左右,三元锂在150-250Wh/kg之间。另外,固态电池凭借自身较高的机械强度在运用的过程中可以抑制电池循环使用之中的锂枝晶的刺穿,使锂金属负极的应用不再是梦想。把电极换为金属锂,其比容高,电压大,避免了液态电池用金属锂作负极会因多次充放电粉化、枝晶生长,导致循环性差,甚至枝晶刺穿薄膜,引起短路的风险。固态想上位,至少还需20年?这些显然就是固态电池大受欢迎的原因所在。高安全性一定是固态电池的首要优势。根据有关数据,新能源汽车起火事故原因中,电池自燃占比31%。相较之下,固态电解质不可燃、耐高温、无腐蚀、不挥发、不漏液,同时具有一定机械强度,安全性更好;半固态电解质中液体占比也小于10%,可燃性大大降低。五一假期发生的多起新能源车燃烧事件,更让消费者期待固态电池的到来。同时,固态电池拥有更高能量密度和较小体积。固态电池电化学窗口宽,能承受更高电压(5V以上),材料选择范围广。因此,可通过采用高比容量的正极、负极材料,使能量密度达到500Wh/kg甚至更高,远超液态350Wh/kg理论极限。而固态电解质取代隔膜和电解液,正负极之间的距离可以缩短到只有几到十几个微米,从而大幅降低电池厚度。因此,同样电量情况下,固态电池体积更小。另外,固态电池还具备宽温区运行的优势。电动车在冬季续航里程之所以下滑明显,主要在于液态电解质在冬季低温环境下流动性下降。而固态电解质可以在-30℃至100℃的更广泛温度范围内稳定工作。当然,固态电池也并非完美无缺,目前来看还是有很多缺点存在的。比如:与液态电解质相比,固态电解质与电极材料之间的接触面积较小,导致离子传输速度较慢,影响了电池的充电和放电效率;界面电阻太大,使得快充过程中的能量损耗增加,快充效率受限;固态电池的充放电循环次数有限,循环寿命较短;生产技术尚不成熟,工艺复杂,生产效率低,导致其成本远高于液态电池。这些显然都是固态电池全面商业化必须面对的挑战。欧阳明高就表示,全固态电池是公认的下一代电池的首选方案之一,也是下一代电池技术竞争的关键制高点,但是也要注意防范激进技术路线带来的颠覆性风险。“液态电池的应用周期至少还有20年。固态电池要想替代液态锂离子电池50%的市场份额,至少需要20至30年。”欧阳明高如是说。 ... PC版: 手机版:

封面图片

10分钟快速充放 浙大电池新方案登《自然》

10分钟快速充放 浙大电池新方案登《自然》 浙江大学材料科学与工程学院范修林研究员团队长期致力于锂离子电池研究。近期,该团队开发并验证了一套新型极端电解液设计原则,打破了传统的锂离子传输模式,并为具备特殊物化性质的电解液开辟了一条全新的研究途径。基于此理念,团队设计出一款新型电解液,不仅能够支持高比能锂离子电池在-70℃到60℃的超宽温区内进行可逆地充放电,还可以使得高能量密度锂离子电池在10分钟内完成快速充放电。研究中的锂离子软包电池这项研究于北京时间2月29日刊发在国际顶级期刊《自然》。论文第一作者为浙江大学陆迪博士研究生和李如宏研究员,通讯作者为范修林研究员、美国马里兰大学王春生教授和美国布鲁克海文国家实验室的胡恩源教授,并受到浙大陈立新教授、范利武长聘副教授、肖学章副教授以及中国科学院化学研究所王建平研究员和马里兰大学邓涛博士(现为上海交大中英低碳研究院副教授)的大力支持。浙大为第一单位和最后通讯单位。锂电池快速充电及低温性能难点在哪里?锂电池要实现快充,意味着在整个体系中锂离子都要实现快速的迁移。目前认为,锂离子在电解液及电解液-电极界面膜中的迁移为整个过程中的速度控制步骤。而界面膜又是电解液原位生成的,与电解液的性质密切相关。综合来讲,在锂离子电池中要实现快充的突破,电解液的特性至关重要。范修林科研团队为此,范修林团队选择了从电解液这块“空白区”下手。当然这里的难度也是可想而知,要让锂离子电解液同时具备有效的电解液-电极界面膜、宽温域内高离子电导率和快速离子传输动力学,这对于此前已有研究的电解液来说都是不可能实现的。这是因为电解液的高离子电导率需要溶剂具备高锂离子溶剂化能,而生成无机的电解液-电极界面膜需要电解液溶剂具有低锂离子溶剂化能,所以目前的电解液不可能同时实现高离子电导率和阴离子衍生的电解液-电极界面膜。由此,范修林团队朝着“不可能”开展长达4年的研究。室温快充仅需十分钟,低温性能还优异面对几万种的溶剂,浙大团队首次建立了一套溶剂筛选原则,用于筛选宽温域内快速锂离子动力学的潜在溶剂,进而将23种目标材料,制作成电解液并应用于锂电池,展开实证研究。记者在实验室看到研究中的锂离子软包电池,如同一块块压缩饼干,却能展现出不同的功能效应。溶剂筛选策略。(a)溶剂化鞘体积与溶剂化能关系图;(b)溶剂化鞘体积与离子传输能垒关系图在一次次实验中,浙大科研人员提出并验证了一种“配体通道促进传输”机制,建立了离子在电解液和固态电解质中传输的统一框架,最终确定了电解液的最佳配方。电解液中离子传输行为。(a)介质传输;(b)结构传输;(c)配体通道促进传输相关测试数据表明,浙大提出的新型电解液在25℃室温下的离子电导率是商用电解液的4倍;在-70℃时高于商用电解液3个数量级以上。“在同等条件下,我们设计的锂离子电池,能够实现充电10分钟,达到八成充电量,展现出超快的离子传输行为。”快充性能优异,也意味着低温充放电性能较为优异,“在低温下我们的电池也能展现出良好的性能”。不同电解液的离子电导率。其中所筛选出的FAN电解液体系的离子电导率在整个温区(+60℃ -70℃)都远高于其他体系浙大电池,离新质生产力有多远?谈及未来应用方向,范修林研究员认为当前电池成本还比较高,可以率先在极地科考、空间探测、海底勘探等极端温度情况中应用。而随着电解液技术的不断攻关迭代,范修林研究员对新型锂离子电池装配到新能源汽车很有信心。“目前,我们团队已经与相关企业开展紧密合作。”“我们的电解液设计原则不仅对极端工况下锂电池有效,随着研究的深入,我们发现其对钠离子电池和钾离子电池也十分有效。”范修林研究员说,“这也将让科研成果聚焦国民经济主战场,更好服务‘双碳’目标,推动能源绿色低碳发展。”(文 柯溢能、吴雅兰/声像制作 杨萝萝 部分科研图片由受访团队提供) ... PC版: 手机版:

封面图片

苹果供应商TDK称固态电池取得突破

苹果供应商TDK称固态电池取得突破 日本 TDK 开发出了全固态电池用新材料。通过应用于在蓄电容量中非常重要的“电解质”,与以往产品相比,蓄电池的能量密度提高了100倍。预计将搭载于智能手表和助听器等小型设备,最早将于2025年实现样品供货。此次成功开发出了电解质的新材料。该公司表示,此次开发的属于氧化物类材料“更详细的信息没有公布”。通过新材料能提高能量密度这一点获得了确认。 、

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人