浙大电池新方案登《自然》:10分钟快速充放

浙大电池新方案登《自然》:10分钟快速充放 基于此理念,团队设计出一款新型电解液,不仅能够支持高比能锂离子电池在-70℃到60℃的超宽温区内进行可逆地充放电,还可以使得高能量密度锂离子电池在10分钟内完成快速充放电。范修林研究员介绍,在锂电池中要实现快充的突破,电解液的特性至关重要,而传统电解液中的锂离子传输模式无法实现锂离子的快速迁移。研究团队建立了一套溶剂筛选原则,在几万种溶剂中筛选出23种“潜力溶剂”,配制出多种电解液,制作成锂离子软包电池,展开实证研究。经过长达4年的研究,浙大科研人员最终确定了电解液的最佳配方。相关测试数据表明,范修林团队提出的新型电解液在25℃室温下的离子电导率是目前商用电解液的4倍,在-70℃时高于商用电解液3个数量级以上。范修林认为,当前电池成本较高,可以率先在极地科考、空间探测、海底勘探等极端温度情况中应用。而随着电解液技术的不断攻关迭代,范修林对新型锂离子电池装配到新能源汽车很有信心。 ... PC版: 手机版:

相关推荐

封面图片

10分钟快速充放 浙大电池新方案登《自然》

10分钟快速充放 浙大电池新方案登《自然》 浙江大学材料科学与工程学院范修林研究员团队长期致力于锂离子电池研究。近期,该团队开发并验证了一套新型极端电解液设计原则,打破了传统的锂离子传输模式,并为具备特殊物化性质的电解液开辟了一条全新的研究途径。基于此理念,团队设计出一款新型电解液,不仅能够支持高比能锂离子电池在-70℃到60℃的超宽温区内进行可逆地充放电,还可以使得高能量密度锂离子电池在10分钟内完成快速充放电。研究中的锂离子软包电池这项研究于北京时间2月29日刊发在国际顶级期刊《自然》。论文第一作者为浙江大学陆迪博士研究生和李如宏研究员,通讯作者为范修林研究员、美国马里兰大学王春生教授和美国布鲁克海文国家实验室的胡恩源教授,并受到浙大陈立新教授、范利武长聘副教授、肖学章副教授以及中国科学院化学研究所王建平研究员和马里兰大学邓涛博士(现为上海交大中英低碳研究院副教授)的大力支持。浙大为第一单位和最后通讯单位。锂电池快速充电及低温性能难点在哪里?锂电池要实现快充,意味着在整个体系中锂离子都要实现快速的迁移。目前认为,锂离子在电解液及电解液-电极界面膜中的迁移为整个过程中的速度控制步骤。而界面膜又是电解液原位生成的,与电解液的性质密切相关。综合来讲,在锂离子电池中要实现快充的突破,电解液的特性至关重要。范修林科研团队为此,范修林团队选择了从电解液这块“空白区”下手。当然这里的难度也是可想而知,要让锂离子电解液同时具备有效的电解液-电极界面膜、宽温域内高离子电导率和快速离子传输动力学,这对于此前已有研究的电解液来说都是不可能实现的。这是因为电解液的高离子电导率需要溶剂具备高锂离子溶剂化能,而生成无机的电解液-电极界面膜需要电解液溶剂具有低锂离子溶剂化能,所以目前的电解液不可能同时实现高离子电导率和阴离子衍生的电解液-电极界面膜。由此,范修林团队朝着“不可能”开展长达4年的研究。室温快充仅需十分钟,低温性能还优异面对几万种的溶剂,浙大团队首次建立了一套溶剂筛选原则,用于筛选宽温域内快速锂离子动力学的潜在溶剂,进而将23种目标材料,制作成电解液并应用于锂电池,展开实证研究。记者在实验室看到研究中的锂离子软包电池,如同一块块压缩饼干,却能展现出不同的功能效应。溶剂筛选策略。(a)溶剂化鞘体积与溶剂化能关系图;(b)溶剂化鞘体积与离子传输能垒关系图在一次次实验中,浙大科研人员提出并验证了一种“配体通道促进传输”机制,建立了离子在电解液和固态电解质中传输的统一框架,最终确定了电解液的最佳配方。电解液中离子传输行为。(a)介质传输;(b)结构传输;(c)配体通道促进传输相关测试数据表明,浙大提出的新型电解液在25℃室温下的离子电导率是商用电解液的4倍;在-70℃时高于商用电解液3个数量级以上。“在同等条件下,我们设计的锂离子电池,能够实现充电10分钟,达到八成充电量,展现出超快的离子传输行为。”快充性能优异,也意味着低温充放电性能较为优异,“在低温下我们的电池也能展现出良好的性能”。不同电解液的离子电导率。其中所筛选出的FAN电解液体系的离子电导率在整个温区(+60℃ -70℃)都远高于其他体系浙大电池,离新质生产力有多远?谈及未来应用方向,范修林研究员认为当前电池成本还比较高,可以率先在极地科考、空间探测、海底勘探等极端温度情况中应用。而随着电解液技术的不断攻关迭代,范修林研究员对新型锂离子电池装配到新能源汽车很有信心。“目前,我们团队已经与相关企业开展紧密合作。”“我们的电解液设计原则不仅对极端工况下锂电池有效,随着研究的深入,我们发现其对钠离子电池和钾离子电池也十分有效。”范修林研究员说,“这也将让科研成果聚焦国民经济主战场,更好服务‘双碳’目标,推动能源绿色低碳发展。”(文 柯溢能、吴雅兰/声像制作 杨萝萝 部分科研图片由受访团队提供) ... PC版: 手机版:

封面图片

水电池有望5年内取代锂离子电池 不会燃爆、可回收再利用

水电池有望5年内取代锂离子电池 不会燃爆、可回收再利用 研究团队目前已经开发出用于钟表的硬币大小的水基电池原型,以及类似于AA或AAA电池的圆柱形电池。电池通过产生从电池的正极(阴极)到负极(阳极)的电子流来储存能量。当电子向相反方向流动时,它们会消耗能量,电池中的液体是用来在两端之间来回传递电子的。在水电池中,电解液是加了一些盐的水,而不是硫酸或锂盐之类的东西。目前,这种电池的使用寿命与市场上的锂离子电池相当,能量密度约为每公斤75瓦时,约为最新款特斯拉汽车电池的30%,未来通过开发新型纳米材料作为电极还有望再次提高能量密度。此外,这种电池制作工艺简单,所用材料在自然界中含量丰富,价格低廉,毒性更低。科学家称,短期1到3年内有望替代铅酸电池,5到10年内有望取代锂离子电池。 ... PC版: 手机版:

封面图片

科学家们开发出了一种用于锂离子电池的超低浓度电解质

科学家们开发出了一种用于锂离子电池的超低浓度电解质 锂离子电池(LIB)为智能手机和平板电脑提供电力,驱动电动汽车,并在发电厂储存电力。大多数锂离子电池的主要成分是锂钴氧化物(LCO)阴极、石墨阳极以及为阴极和阳极的解耦反应提供移动离子的液态电解质。这些电解质决定了电极上形成的相间层的性质,从而影响电池循环性能等特性。然而,商用电解质大多仍基于 30 多年前配制的系统:1.0 至 1.2 摩尔/升六氟磷酸锂(LiPF6)在羧酸酯("碳酸溶剂")中的溶液。在过去的十年中,高浓度电解质(> 3 mol/L)得到了发展,它们有利于形成坚固的无机主导相间层,从而提高了电池性能。然而,这些电解质粘度高、润湿能力差、导电性差。由于需要大量的锂盐,这些电解质的价格也非常昂贵,而这往往是影响可行性的一个关键参数。为了降低成本,超低浓度电解质(< 0.3 mol/L)的研究也已开始。这些电解质的缺点是,电池电池分解的溶剂多于少量的盐阴离子,从而导致有机物占主导地位,相间层的稳定性较差。由宁波大学(中国)和波多黎各大学里奥皮德拉斯校区(美国)的袁金良、夏岚和吴先勇领导的研究小组现已开发出一种超低浓度电解质,可能适用于锂离子电池的实际应用:LiDFOB/EC-DMC。LiDFOB(二氟草酸硼酸锂)是一种常见的添加剂,价格比LiPF6 便宜得多。EC-DMC (碳酸乙酯/碳酸二甲酯)是一种商用碳酸酯溶剂。这种电解液的含盐量低至 2 重量百分比(0.16 摩尔/升),但离子电导率却高达 4.6 mS/cm,足以使电池正常工作。此外,DFOB- 阴离子的特性还能在 LCO 和石墨电极上形成以无机物为主的坚固相间层,从而在半电池和全电池中实现出色的循环稳定性。目前使用的LiPF6会在潮湿环境中分解,释放出剧毒和腐蚀性的氟化氢气体(HF),而 LiDFOB 则对水和空气稳定。使用 LiDFOB 的 LIB 不需要严格的干燥室条件,而可以在环境条件下制造,这又是一个节约成本的特点。此外,回收问题也会大大减少,从而提高可持续性。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

大连化物所开发出多电子转移高能量密度水系电池

大连化物所开发出多电子转移高能量密度水系电池 溴-碘卤素化合物构建的多电子转移正极。大连化物所供图能量密度和安全性是衡量二次电池的重要标准。传统的非水系锂离子电池尽管具有高的能量密度,但其采用的有机电解液易燃,安全性问题难以保障。水系电池采用水作为溶剂,具有安全性。然而,水系电池的能量密度一般较低,单位体积内的电池储存的电量较少。本工作中,李先锋团队使用碘离子和溴离子混合卤素溶液作为电解液,构建了碘离子(I-)到碘单质(I2)进而到碘酸根(IO3-)的多电子转移反应。其开发的多电子转移正极比容量达840安时/升,该正极与金属镉组成全电池,基于正极侧的能量密度超过1200 瓦时/升。优化后的电解液,溴化物充当了氧化还原的“桥梁”,大幅度提高了电池的效率和反应速率。该研究有望拓宽高能量密度水系电池的研究途径,为高能量密度水系电池的设计提供一种新思路。此外,该研究还拓展了水系电池的应用范围,有望应用在动力电池等领域,为环境保护和能源结构升级提供技术保障。相关论文信息: ... PC版: 手机版:

封面图片

新的充电算法可将锂离子电池的寿命延长一倍

新的充电算法可将锂离子电池的寿命延长一倍 柏林亥姆霍兹中心(HZB)和柏林洪堡大学的一个欧洲研究小组开发出一种替代充电方案,使锂离子电池的寿命比现在更长。研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。锂离子电池是一种结构紧凑、坚固耐用的能源容器,已成为人们的宠儿。电动汽车和电子设备都依赖于它们,但随着电解质穿过分隔阳极和阴极的薄膜,它们的容量会逐渐降低。目前最好的商业级锂离子电池使用的电极由一种名为 NMC532 的化合物和石墨制成,使用寿命长达 8 年。传统的充电方式是使用恒定电流(CC)的外部电能。研究分析了使用 CC 充电时电池样品的情况,发现阳极的固体电解质界面(SEI)"明显变厚"。此外,他们还在 NMC532 和石墨电极结构中发现了更多裂纹。较厚的 SEI 和电极上较多的裂缝意味着锂离子电池容量的显著损失。因此,研究人员开发了一种基于脉冲电流(PC)的充电协议。使用新的 PC 协议对电池充电后,研究小组发现 SEI 接口变薄了很多,电极材料发生的结构变化也更少。研究小组利用欧洲两个领先的粒子加速同步加速器设施"BESSY II"和"PETRA III"进行了脉冲电流充电实验。他们发现,PC 充电可促进石墨中锂离子的"均匀分布",从而减少石墨颗粒中的机械应力和裂纹。该方案还能抑制 NMC532 阴极的结构退化。研究表明,方波电流的高频脉冲效果最好。测试表明,PC 充电可使商用锂离子电池的使用寿命延长一倍,容量保持率达到 80%。这项研究的共同作者、柏林工业大学教授 Julia Kowal 博士说:"脉冲充电可以在电极材料和界面的稳定性方面带来许多优势,并大大延长电池的使用寿命。" ... PC版: 手机版:

封面图片

室温下可充钙-氧电池 复旦大学研究成果发表于《自然》主刊

室温下可充钙-氧电池 复旦大学研究成果发表于《自然》主刊 据了解,钙金属具有低氧化还原电位和多价性等特性,结合我国丰富的钙资源,基于金属钙的电池体系在未来的能源应用中具有广阔前景。在基于金属钙的电池中,钙-氧气电池具有最高的理论能量密度, 但目前尚未实现能够在室温下稳定充放电的钙-氧气电池。其中的关键问题和挑战在于,钙金属负极具有高电化学活性,容易导致电解液被还原分解并在电极表面形成钝化层,使得钙金属负极失效;空气正极具有高电极电势,容易导致电解液氧化分解,正极电化学性能迅速衰退。目前仍难以找到一种能与钙金属负极相匹配,且能适应高电极电势空气正极的电解质,严重制约了钙-氧气电池的发展。为了解决这一挑战,团队通过系统设计溶剂、电解质盐以及电解质配比,成功制备出一种基于二甲基亚砜/离子液体的新型电解质,有效满足了电池正负极的高要求,构建了可室温工作的新型钙-氧气电池。科研人员表示,最新创建出的钙-氧气电池主要由金属钙负极、碳纳米管空气正极和有机电解质三个部分组成。电池设计不仅优化了性能和成本,也兼顾了环境的可持续性与在柔性电子设备中的应用要求。其中,金属钙负极成本较低,且具有较高理论容量,同时可进一步将金属钙负载到柔性基底上,得到柔性的金属钙负极,为实现柔性钙-氧气电池奠定了基础;新型电解质在室温下表现出高离子导率,展示了稳定的电化学特性,显著提升了电池整体安全性。据介绍,这种电池可支持室温条件下长达700次的充放电循环。团队还在此基础上成功构建出同时具有高柔性和高安全性的钙-氧气电池,可用于制备下一代可穿戴电池织物。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人