普林斯顿大学研究人员开发出更精确的基因编辑工具

普林斯顿大学研究人员开发出更精确的基因编辑工具 虽然基于CRISPR技术的基因编辑特异性强、准确性高、用途广泛,但实现这些编辑的效率却很低。在这篇论文中,亚当森实验室描述了一种更高效的引导编辑器。图片来源:Caitlin Sedwick for Princeton University一种相对较新的方法被称为"引导编辑",它能以极高的精确度和多功能性进行基因编辑,但却有一个关键的代价:编辑装置的效率不稳定,而且往往很低。换句话说,虽然"引导编辑"可以实现高精度编辑,而且很少产生不必要的副产品,但这种方法往往无法以合理的频率进行编辑。在2024 年 4 月 18 日刊登在《自然》杂志上的一篇论文中,普林斯顿大学的科学家严俊和布里特-亚当森以及几位同事描述了一种更高效的引导编辑器。作者(左起):分子生物学助理教授、刘易斯-西格勒综合基因组研究所(Lewis-Sigler Institute for Integrative Genomics)布里特妮-亚当森(Brittany Adamson);亚当森实验室研究生、第一作者严俊(Jun Yan)。图片来源:普林斯顿大学 Denise Applewhite 拍摄的布里特-亚当森照片。严俊的照片由作者提供。引导编辑系统最低限度由两部分组成:CRISPR/Cas9 蛋白元件的改进版和称为pegRNA 的核糖核酸(RNA)分子。这些成分通过几个协调步骤共同发挥作用:首先,pegRNA 与蛋白质结合,引导产生的复合物到达基因组中的理想位置。在那里,蛋白质切开DNA,利用 pegRNA 上编码的模板序列,将编辑内容"反向转录"到附近的基因组中。这样,引导编辑器就能将准确的序列"写入"目标 DNA 中。亚当森说:"引导编辑是一种非常强大的基因组编辑工具,因为它能让我们更准确地控制基因组序列是如何改变的。"研究伊始,亚当森和亚当森研究小组及分子生物学系的研究生严推断,未知的细胞过程可能会帮助或阻碍素材编辑。为了确定这些过程,Yan 制定了一个概念简单的计划:首先,他将设计一种细胞系,当安装了某些引导编辑时,该细胞系就会发出绿色荧光。然后,他将系统性地阻断这些细胞中正常表达的蛋白质的表达,并测量编辑诱导的荧光,以确定这些蛋白质中哪些会影响引导编辑。通过执行这一计划,研究小组确定了36种细胞决定引导编辑的因素,其中只有一种小RNA结合蛋白La能促进编辑。Yan说:"虽然促进素材编辑显然不是La蛋白的正常功能,但我们的实验表明,它能有力地促进这一过程。"众所周知,在细胞内,La能结合新生小RNA分子末端的特定序列,保护这些RNA不被降解。普林斯顿大学团队立即意识到,Yan 首次实验中使用的 pegRNA 很可能包含这些序列,即所谓的聚尿苷束,因为它们是细胞中 pegRNA 表达的典型副产品,但往往被忽视。随后的实验表明,这些 pegRNA 无意中利用了 La 的末端结合活性来保护和促进引导编辑。在研究结果的激励下,研究小组希望了解将 La 中与聚尿苷束结合的部分与标准的质粒编辑蛋白融合能否提高质粒编辑效率。他们欣喜地发现,这种被称为 PE7 的蛋白质在各种条件下都能大幅提高预期的素材编辑效率,而且在使用某些素材编辑系统时,不需要的副产物出现的频率非常低。他们的研究结果很快引起了对在原代人类细胞中使用素材编辑感兴趣的同行们的注意,其中包括波士顿儿童医院和哈佛医学院的丹尼尔-鲍尔(Daniel Bauer)以及加州大学旧金山分校的亚历山大-马森(Alexander Marson)。研究小组与这些实验室的科学家一起,继续证明了 PE7 还能提高治疗相关细胞类型的原生编辑效率,为未来的临床应用提供了更广阔的前景。鲍尔指出:"这项工作是一个很好的例子,说明深入探究细胞的内部运作可以获得意想不到的见解,从而在短期内产生生物医学影响。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

超越CRISPR 新基因编辑工具SeekRNA面世 精确切割靶点插入序列

超越CRISPR 新基因编辑工具SeekRNA面世 精确切割靶点插入序列 IS1111和IS110家族。图片来源:《自然·通讯》网站CRISPR已广泛应用于多个领域。它降低了人类疾病检测成本,提高了检测速度,帮助科学家开发出嵌合抗原受体T细胞(CAR-T)免疫疗法以治疗癌症。研究人员解释说,CRISPR的工作原理是让靶DNA的两条链断裂,然后借助其他蛋白或DNA修复机制插入新DNA序列,但这可能产生错误。SeekRNA则能在不使用任何其他蛋白的情况下,精确切割靶点并插入新DNA序列。这使其相对CRISPR来说更加精确可靠,减少了潜在错误。SeekRNA源于名为IS1111和IS110的天然插入序列家族,该家族成员在细菌和古菌(无核细胞)中广泛存在。大多数插入序列蛋白很少有或没有靶选择性,但这些家族的成员具有很高的靶特异性。利用这一特性,seekRNA能适应任何基因组序列,并以精确方式插入新DNA。目前,研究人员已经在细菌中成功测试了seekRNA的有效性。接下来,他们计划研究该技术能否适用于人类体内更为复杂的真核细胞。他们目前使用的SeekRNA包含由350个氨基酸组成的小蛋白和由70100个核苷酸组成的RNA链。这种尺寸的系统可以方便地集成到纳米级生物递送载体(囊泡或脂质纳米颗粒)上,有效递送到目标细胞中。此外,其他科研团队也在对IS1111和IS110家族的基因编辑潜力开展类似研究。研究人员还计划通过直接实验室采样和应用较短的seekRNA,进一步探索该技术的潜力。 ... PC版: 手机版:

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有 23 对一半来自母亲,一半来自父亲,包括性染色体 X 和 Y即总共 46 对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量92 条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(Sergi Regot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(Connor McKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明 DNA 正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种 CDK 在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现 CDK 4 和 CDK 6 的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK 2 也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约 90% 的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有 5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止 APC 在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现癌症可以在没有基因突变的情况下发生

研究发现癌症可以在没有基因突变的情况下发生 虽然已有研究描述了这些过程对癌症发展的影响,但这是科学家们首次证明基因突变并非癌症发病的必要条件。这一发现迫使我们重新考虑 30 多年来一直认为癌症主要是遗传疾病的理论,即癌症必然是由基因组水平上累积的DNA变异引起的。通过降低多聚核蛋白的表达水平而获得肿瘤的例子。左边是正常发育过程中眼睛前体组织的例子。右图是通过降低多聚核蛋白的表达水平而诱发的肿瘤。DNA 被染成蓝色。位于细胞末端的一种蛋白质被标记为绿色,以显示细胞在组织中的组织方式。肿瘤中失去了正常的组织结构。比例尺:100 微米。图片来源: Giacomo Cavalli为了证明这一点,研究小组重点研究了能改变基因活动的表观遗传因素。通过在果蝇体内造成表观遗传失调,然后将细胞恢复到正常状态,科学家们发现基因组的部分功能仍然失调。这种现象会诱发一种肿瘤状态,这种肿瘤状态会自主维持并继续发展,即使导致肿瘤的信号已经恢复,这些细胞的癌变状态仍会保持在记忆中。这些结论将于2024年4月24日发表在《自然》杂志上,为肿瘤学开辟了新的治疗途径。说明在人类遗传学研究所(法国国家科学研究中心/蒙彼利埃大学)工作。表观遗传学研究的是在相同的 DNA 序列下,不同基因表达谱的遗传机制。基因组被定义为细胞或生物体内所含的遗传物质集合,也就是整个 DNA 序列。科学家们重点研究了被称为多聚核蛋白的表观遗传因子,它们调控着关键基因的表达,在许多人类癌症中都出现了失调。当这些蛋白被实验性地移除时,目标基因的活性就会被打乱:一些基因可以激活自身的转录并自我维持。当多聚核糖蛋白重新整合到细胞中时,一部分基因会对这些蛋白产生抗性,并在细胞分裂过程中保持失调,从而使癌症继续发展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因 2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止 DNA 损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了 145 个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和 DNA 损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过 CRISPR 筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质 SIRT1 得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(Gabriel Balmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对 SIRT1 的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(David Adams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的 145 个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及 DNA 复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当 SIRT1 蛋白被抑制时,DNA 损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为 SMC3 的蛋白质的化学水平实现的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

《人类基因组编辑研究伦理指引》发布 严禁将编辑后的人胚用于生育

《人类基因组编辑研究伦理指引》发布 严禁将编辑后的人胚用于生育 体细胞基因组编辑临床研究的主要目的是治疗或预防疾病,体细胞临床研究应基于基础研究证据,进行必要的动物实验及临床前体外实验以获得开展临床研究所需的安全性、有效性循证。涉及人胚和胎儿体细胞的基因组编辑研究,还须审慎考虑并评估可能造成可遗传变异的风险,尤其是在人胚发育早期阶段,避免可遗传的基因组被编辑的风险。目前进行任何生殖系基因组编辑的临床研究是不负责任和不被允许的。只有在对获益与风险以及其他可供选择的方案进行充分理解和权衡,安全性和有效性问题得以解决,已获得广泛的社会共识,经严格审慎的评估并在严格监管下,才可考虑开展临床研究。 ... PC版: 手机版:

封面图片

荷兰研究人员用CRISPR基因编辑疗法在实验室环境下“消灭”艾滋病毒

荷兰研究人员用CRISPR基因编辑疗法在实验室环境下“消灭”艾滋病毒 “分子剪刀”定向灭活HIV在此次医学会议上,荷兰阿姆斯特丹大学的研究人员提前发表了一项新研究,展示了如何使用最新的CRISPR-Cas基因编辑技术消除实验室环境下受感染细胞中的所有艾滋病病毒痕迹。该研究原计划于今年4月27日至30日在西班牙巴塞罗那举行的欧洲临床微生物学和传染病大会(ECCMID 2024)发表。相关研究由荷兰阿姆斯特丹大学医学中心的埃琳娜·埃雷拉-卡里略(Elena Herrera-Carrillo)博士及其团队成员包元玲(音)、于正浩(音)和帕斯卡·克鲁恩(Pascal Kroon)领导。据新华社报道,CRISPR全名为“成簇的、规律间隔的短回文重复序列”,原本是细菌防御病毒侵入的一种机制,被科学家用于编辑基因。法国科学家埃玛纽埃勒·沙尔庞捷和美国科学家珍妮弗·道德纳因为开发出相关技术而获得2020年诺贝尔化学奖。这项技术已成为可高效、精确、程序化修改细胞基因的工具。HIV治疗的重大挑战之一是该病毒具有将自身基因组整合到宿主DNA中的能力,尽管目前有多种有效的抗病毒药物用于治疗HIV感染,但只能抑制HIV在人体内的复制,无法将其清除,故患者需要接受终身抗病毒治疗,因为一旦抗病毒治疗停止,HIV可能会卷土重来。HIV可以感染体内不同类型的细胞和组织,每种细胞和组织都有其独特的环境和特征。荷兰研究人员对此表示, CRISPR-Cas的功能就像“分子剪刀”一样,在向导RNA (gRNA) 的指导下,可以在指定点切割DNA,他们正在寻找一种在所有这些情况下都可灭活艾滋病毒的方法,“我们的目标是开发一种强大且安全的组合CRISPR-Cas方案,可以在不同的细胞环境中灭活不同的艾滋病毒毒株。”在这项研究中,荷兰研究人员使用“分子剪刀”与两种gRNA来对抗所有已知的HIV 毒株中保持相同的病毒基因组部分,并成功治愈了HIV感染者的T细胞。荷兰研究人员进一步评估了来自不同细菌的各种CRISPR-Cas系统,并展示了saCas9和cjCas两个系统的应用结果。saCas9表现出出色的抗病毒性能,成功地用单个gRNA完全灭活HIV,并用两个gRNA切除HIV的DNA。荷兰研究人员证明,当在培养皿中的免疫细胞上进行测试时,他们的CRISPR系统可以灭活所有HIV病毒,将其从免疫细胞中清除。实际运用或仍需时日值得注意的是,荷兰阿姆斯特丹大学医学中心团队在医学会议上强调他们的工作仍然只是“概念证明”,不会很快成为HIV的治疗方法。英国诺丁汉大学干细胞和基因治疗技术副教授詹姆斯·迪克森博士对此表示同意,称完整的研究结果仍需要仔细审查,“需要做更多的工作来证明这些细胞测定的结果可以在未来的治疗中发生在整个身体中。在该疗法对HIV感染者产生影响之前,还需要进行更多的开发。”其他科学家也在尝试使用CRISPR来对抗HIV。美国生物制药公司Excision BioTherapeutics 2023年10月曾表示,三名感染HIV的志愿者在接受48周后的CRISPR疗法后没有出现严重的副作用。不过,伦敦弗朗西斯·克里克研究所的病毒专家乔纳森·斯托伊博士表示,尽管荷兰阿姆斯特丹大学医学中心团队的结果令人鼓舞,但下一步是在动物身上进行试验,最终在人体上进行试验,以证明这种治疗方法可以触及所有携带休眠艾滋病毒的免疫细胞。斯托伊指出,其中一些细胞被认为存在于骨髓中,但也可能涉及其他身体部位。“治疗的脱靶效应以及可能的长期副作用仍然令人担忧。”斯托伊说,“因此,即使假设这种基于CRISPR的疗法被证明是有效的,在任何此类基于CRISPR的疗法似乎还需要很多年的时间才可以成为常规疗法。” ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人