超越CRISPR 新基因编辑工具SeekRNA面世 精确切割靶点插入序列

超越CRISPR 新基因编辑工具SeekRNA面世 精确切割靶点插入序列 IS1111和IS110家族。图片来源:《自然·通讯》网站CRISPR已广泛应用于多个领域。它降低了人类疾病检测成本,提高了检测速度,帮助科学家开发出嵌合抗原受体T细胞(CAR-T)免疫疗法以治疗癌症。研究人员解释说,CRISPR的工作原理是让靶DNA的两条链断裂,然后借助其他蛋白或DNA修复机制插入新DNA序列,但这可能产生错误。SeekRNA则能在不使用任何其他蛋白的情况下,精确切割靶点并插入新DNA序列。这使其相对CRISPR来说更加精确可靠,减少了潜在错误。SeekRNA源于名为IS1111和IS110的天然插入序列家族,该家族成员在细菌和古菌(无核细胞)中广泛存在。大多数插入序列蛋白很少有或没有靶选择性,但这些家族的成员具有很高的靶特异性。利用这一特性,seekRNA能适应任何基因组序列,并以精确方式插入新DNA。目前,研究人员已经在细菌中成功测试了seekRNA的有效性。接下来,他们计划研究该技术能否适用于人类体内更为复杂的真核细胞。他们目前使用的SeekRNA包含由350个氨基酸组成的小蛋白和由70100个核苷酸组成的RNA链。这种尺寸的系统可以方便地集成到纳米级生物递送载体(囊泡或脂质纳米颗粒)上,有效递送到目标细胞中。此外,其他科研团队也在对IS1111和IS110家族的基因编辑潜力开展类似研究。研究人员还计划通过直接实验室采样和应用较短的seekRNA,进一步探索该技术的潜力。 ... PC版: 手机版:

相关推荐

封面图片

普林斯顿大学研究人员开发出更精确的基因编辑工具

普林斯顿大学研究人员开发出更精确的基因编辑工具 虽然基于CRISPR技术的基因编辑特异性强、准确性高、用途广泛,但实现这些编辑的效率却很低。在这篇论文中,亚当森实验室描述了一种更高效的引导编辑器。图片来源:Caitlin Sedwick for Princeton University一种相对较新的方法被称为"引导编辑",它能以极高的精确度和多功能性进行基因编辑,但却有一个关键的代价:编辑装置的效率不稳定,而且往往很低。换句话说,虽然"引导编辑"可以实现高精度编辑,而且很少产生不必要的副产品,但这种方法往往无法以合理的频率进行编辑。在2024 年 4 月 18 日刊登在《自然》杂志上的一篇论文中,普林斯顿大学的科学家严俊和布里特-亚当森以及几位同事描述了一种更高效的引导编辑器。作者(左起):分子生物学助理教授、刘易斯-西格勒综合基因组研究所(Lewis-Sigler Institute for Integrative Genomics)布里特妮-亚当森(Brittany Adamson);亚当森实验室研究生、第一作者严俊(Jun Yan)。图片来源:普林斯顿大学 Denise Applewhite 拍摄的布里特-亚当森照片。严俊的照片由作者提供。引导编辑系统最低限度由两部分组成:CRISPR/Cas9 蛋白元件的改进版和称为pegRNA 的核糖核酸(RNA)分子。这些成分通过几个协调步骤共同发挥作用:首先,pegRNA 与蛋白质结合,引导产生的复合物到达基因组中的理想位置。在那里,蛋白质切开DNA,利用 pegRNA 上编码的模板序列,将编辑内容"反向转录"到附近的基因组中。这样,引导编辑器就能将准确的序列"写入"目标 DNA 中。亚当森说:"引导编辑是一种非常强大的基因组编辑工具,因为它能让我们更准确地控制基因组序列是如何改变的。"研究伊始,亚当森和亚当森研究小组及分子生物学系的研究生严推断,未知的细胞过程可能会帮助或阻碍素材编辑。为了确定这些过程,Yan 制定了一个概念简单的计划:首先,他将设计一种细胞系,当安装了某些引导编辑时,该细胞系就会发出绿色荧光。然后,他将系统性地阻断这些细胞中正常表达的蛋白质的表达,并测量编辑诱导的荧光,以确定这些蛋白质中哪些会影响引导编辑。通过执行这一计划,研究小组确定了36种细胞决定引导编辑的因素,其中只有一种小RNA结合蛋白La能促进编辑。Yan说:"虽然促进素材编辑显然不是La蛋白的正常功能,但我们的实验表明,它能有力地促进这一过程。"众所周知,在细胞内,La能结合新生小RNA分子末端的特定序列,保护这些RNA不被降解。普林斯顿大学团队立即意识到,Yan 首次实验中使用的 pegRNA 很可能包含这些序列,即所谓的聚尿苷束,因为它们是细胞中 pegRNA 表达的典型副产品,但往往被忽视。随后的实验表明,这些 pegRNA 无意中利用了 La 的末端结合活性来保护和促进引导编辑。在研究结果的激励下,研究小组希望了解将 La 中与聚尿苷束结合的部分与标准的质粒编辑蛋白融合能否提高质粒编辑效率。他们欣喜地发现,这种被称为 PE7 的蛋白质在各种条件下都能大幅提高预期的素材编辑效率,而且在使用某些素材编辑系统时,不需要的副产物出现的频率非常低。他们的研究结果很快引起了对在原代人类细胞中使用素材编辑感兴趣的同行们的注意,其中包括波士顿儿童医院和哈佛医学院的丹尼尔-鲍尔(Daniel Bauer)以及加州大学旧金山分校的亚历山大-马森(Alexander Marson)。研究小组与这些实验室的科学家一起,继续证明了 PE7 还能提高治疗相关细胞类型的原生编辑效率,为未来的临床应用提供了更广阔的前景。鲍尔指出:"这项工作是一个很好的例子,说明深入探究细胞的内部运作可以获得意想不到的见解,从而在短期内产生生物医学影响。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

简单的新策略提高了CRISPR基因编辑的安全性和精确性

简单的新策略提高了CRISPR基因编辑的安全性和精确性 这种方法解决了CRISPR技术的一个关键问题:在特定点切割基因组,然后再将其重新接合,这本身就存在着破坏DNA的风险,可能会造成大规模、不可预测的破坏。为了缓解这一问题,由卡塔赫纳科技大学干细胞生物学家李默领导的团队研究了在人类干细胞中进行CRISPR编辑后导致大量基因组缺失的DNA修复途径。通过分析,他们发现了一种被称为"微同源物介导的末端连接"(MMEJ)的过程,这是一种容易出错的机制,虽然能够修复 DNA 的断裂,但往往会留下大的缺失。研究人员分析了与 MMEJ 过程有关的各种基因,发现有两个基因在这些不必要的删除事件中起着核心但相反的作用。其中一个名为POLQ的基因被证明会加剧CRISPR编辑后的大缺失风险。而另一个名为RPA的基因则成为具有保护作用的基因组守护者。通过使用抑制POLQ的药物或通过提高RPA表达的基因技术来操纵这些基因,KAUST团队就能在不影响基因组编辑效率的情况下减少有害大缺失的发生,从而保持编辑后干细胞基因组的完整性。"这种简单易用的方法可以减少这些有害的DNA大缺失发生的几率,"李默实验室的前博士生袁宝磊说,他与实验室的毕崇伟和田业腾是这项研究的设计者之一。此外,研究还发现这些干预措施还能提高同源定向修复的效率,而同源定向修复机制因其能够在不增加意外突变的情况下实现精确的基因组编辑而闻名。在涉及干细胞的实验中,这一点非常明显,这些干细胞携带与镰状细胞病和威斯科特-阿尔德里奇综合征(Wiskott-Aldrich Syndrome)这两种遗传性血液病有关的两个基因突变。通过调节POLQ或RPA,研究人员在这些细胞中实现了高度精确和可靠的基因编辑。李说,这些发现标志着在完善CRISPR技术方面迈出了重要一步。他说:"这确实令人兴奋,因为这意味着我们离更安全、更有效地治疗遗传疾病越来越近了。"随着这一创新战略的临时专利申请,该团队将继续探索更多不良突变背后的机制,并磨练技术,使 CRISPR 更安全、更高效。"实现高效和安全仍然是一个需要进一步开发的挑战,"李说,"我们的实验室始终站在最前沿,寻求新颖的解决方案。"DOI: 10.1186/s12915-024-01896-z编译来源:ScitechDaily ... PC版: 手机版:

封面图片

CRISPR-Cas 基因编辑在实验室中完全消除 HIV 病毒

CRISPR-Cas 基因编辑在实验室中完全消除 HIV 病毒 荷兰阿姆斯特丹大学的研究人员报告,他们利用 CRISPR 基因编辑技术,成功的从受感染细胞中消除了 HIV 病毒。HIV 治疗的重大挑战之一是该病毒具有将自身基因组整合到宿主 DNA 中的能力,尽管目前有多种有效的抗病毒药物用于治疗 HIV 感染,但只能抑制 HIV 在人体内的复制,无法将其清除,故患者需要接受终身抗病毒治疗,因为一旦抗病毒治疗停止,HIV 可能会卷土重来。HIV 可以感染体内不同类型的细胞和组织,每种细胞和组织都有其独特的环境和特征。在这项研究中,荷兰研究人员使用“分子剪刀”与两种 gRNA(向导 RNA) 来对抗所有已知的 HIV 毒株中保持相同的病毒基因组部分,并成功治愈了 HIV 感染者的 T 细胞。荷兰研究人员证明,当在培养皿中的免疫细胞上进行测试时,他们的 CRISPR 系统可以灭活所有 HIV 病毒,将其从免疫细胞中清除。研究人员强调他们的工作仍然只是“概念证明”,不会很快成为 HIV 的治疗方法。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

荷兰研究人员用CRISPR基因编辑疗法在实验室环境下“消灭”艾滋病毒

荷兰研究人员用CRISPR基因编辑疗法在实验室环境下“消灭”艾滋病毒 “分子剪刀”定向灭活HIV在此次医学会议上,荷兰阿姆斯特丹大学的研究人员提前发表了一项新研究,展示了如何使用最新的CRISPR-Cas基因编辑技术消除实验室环境下受感染细胞中的所有艾滋病病毒痕迹。该研究原计划于今年4月27日至30日在西班牙巴塞罗那举行的欧洲临床微生物学和传染病大会(ECCMID 2024)发表。相关研究由荷兰阿姆斯特丹大学医学中心的埃琳娜·埃雷拉-卡里略(Elena Herrera-Carrillo)博士及其团队成员包元玲(音)、于正浩(音)和帕斯卡·克鲁恩(Pascal Kroon)领导。据新华社报道,CRISPR全名为“成簇的、规律间隔的短回文重复序列”,原本是细菌防御病毒侵入的一种机制,被科学家用于编辑基因。法国科学家埃玛纽埃勒·沙尔庞捷和美国科学家珍妮弗·道德纳因为开发出相关技术而获得2020年诺贝尔化学奖。这项技术已成为可高效、精确、程序化修改细胞基因的工具。HIV治疗的重大挑战之一是该病毒具有将自身基因组整合到宿主DNA中的能力,尽管目前有多种有效的抗病毒药物用于治疗HIV感染,但只能抑制HIV在人体内的复制,无法将其清除,故患者需要接受终身抗病毒治疗,因为一旦抗病毒治疗停止,HIV可能会卷土重来。HIV可以感染体内不同类型的细胞和组织,每种细胞和组织都有其独特的环境和特征。荷兰研究人员对此表示, CRISPR-Cas的功能就像“分子剪刀”一样,在向导RNA (gRNA) 的指导下,可以在指定点切割DNA,他们正在寻找一种在所有这些情况下都可灭活艾滋病毒的方法,“我们的目标是开发一种强大且安全的组合CRISPR-Cas方案,可以在不同的细胞环境中灭活不同的艾滋病毒毒株。”在这项研究中,荷兰研究人员使用“分子剪刀”与两种gRNA来对抗所有已知的HIV 毒株中保持相同的病毒基因组部分,并成功治愈了HIV感染者的T细胞。荷兰研究人员进一步评估了来自不同细菌的各种CRISPR-Cas系统,并展示了saCas9和cjCas两个系统的应用结果。saCas9表现出出色的抗病毒性能,成功地用单个gRNA完全灭活HIV,并用两个gRNA切除HIV的DNA。荷兰研究人员证明,当在培养皿中的免疫细胞上进行测试时,他们的CRISPR系统可以灭活所有HIV病毒,将其从免疫细胞中清除。实际运用或仍需时日值得注意的是,荷兰阿姆斯特丹大学医学中心团队在医学会议上强调他们的工作仍然只是“概念证明”,不会很快成为HIV的治疗方法。英国诺丁汉大学干细胞和基因治疗技术副教授詹姆斯·迪克森博士对此表示同意,称完整的研究结果仍需要仔细审查,“需要做更多的工作来证明这些细胞测定的结果可以在未来的治疗中发生在整个身体中。在该疗法对HIV感染者产生影响之前,还需要进行更多的开发。”其他科学家也在尝试使用CRISPR来对抗HIV。美国生物制药公司Excision BioTherapeutics 2023年10月曾表示,三名感染HIV的志愿者在接受48周后的CRISPR疗法后没有出现严重的副作用。不过,伦敦弗朗西斯·克里克研究所的病毒专家乔纳森·斯托伊博士表示,尽管荷兰阿姆斯特丹大学医学中心团队的结果令人鼓舞,但下一步是在动物身上进行试验,最终在人体上进行试验,以证明这种治疗方法可以触及所有携带休眠艾滋病毒的免疫细胞。斯托伊指出,其中一些细胞被认为存在于骨髓中,但也可能涉及其他身体部位。“治疗的脱靶效应以及可能的长期副作用仍然令人担忧。”斯托伊说,“因此,即使假设这种基于CRISPR的疗法被证明是有效的,在任何此类基于CRISPR的疗法似乎还需要很多年的时间才可以成为常规疗法。” ... PC版: 手机版:

封面图片

研究发现癌症可以在没有基因突变的情况下发生

研究发现癌症可以在没有基因突变的情况下发生 虽然已有研究描述了这些过程对癌症发展的影响,但这是科学家们首次证明基因突变并非癌症发病的必要条件。这一发现迫使我们重新考虑 30 多年来一直认为癌症主要是遗传疾病的理论,即癌症必然是由基因组水平上累积的DNA变异引起的。通过降低多聚核蛋白的表达水平而获得肿瘤的例子。左边是正常发育过程中眼睛前体组织的例子。右图是通过降低多聚核蛋白的表达水平而诱发的肿瘤。DNA 被染成蓝色。位于细胞末端的一种蛋白质被标记为绿色,以显示细胞在组织中的组织方式。肿瘤中失去了正常的组织结构。比例尺:100 微米。图片来源: Giacomo Cavalli为了证明这一点,研究小组重点研究了能改变基因活动的表观遗传因素。通过在果蝇体内造成表观遗传失调,然后将细胞恢复到正常状态,科学家们发现基因组的部分功能仍然失调。这种现象会诱发一种肿瘤状态,这种肿瘤状态会自主维持并继续发展,即使导致肿瘤的信号已经恢复,这些细胞的癌变状态仍会保持在记忆中。这些结论将于2024年4月24日发表在《自然》杂志上,为肿瘤学开辟了新的治疗途径。说明在人类遗传学研究所(法国国家科学研究中心/蒙彼利埃大学)工作。表观遗传学研究的是在相同的 DNA 序列下,不同基因表达谱的遗传机制。基因组被定义为细胞或生物体内所含的遗传物质集合,也就是整个 DNA 序列。科学家们重点研究了被称为多聚核蛋白的表观遗传因子,它们调控着关键基因的表达,在许多人类癌症中都出现了失调。当这些蛋白被实验性地移除时,目标基因的活性就会被打乱:一些基因可以激活自身的转录并自我维持。当多聚核糖蛋白重新整合到细胞中时,一部分基因会对这些蛋白产生抗性,并在细胞分裂过程中保持失调,从而使癌症继续发展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

由DNA和肽组成的自组装合成细胞超越了自然能力

由DNA和肽组成的自组装合成细胞超越了自然能力  新的合成细胞利用 DNA 和肽构建细胞骨架(用淡紫色标出)图/北卡罗来纳大学教堂山分校细胞的结构和稳定性来自细胞骨架,这是一个由蛋白质组成的交联框架,用于包裹和保护其他成分。根据细胞类型的不同,这种细胞骨架可以有不同程度的灵活性,并以不同的方式对环境做出反应,从而赋予细胞特异功能。在这项新研究中,北卡罗来纳大学教堂山分校的科学家们开发出了由 DNA、肽和其他遗传物质组成的合成自组装细胞骨架。该研究的第一作者罗尼特-弗里曼说:"DNA通常不会出现在细胞骨架中。我们对DNA序列进行了重新编程,使其成为一种建筑材料,将多肽结合在一起。一旦将这种编程材料放入水滴中,结构就会成形。"研究人员能够对 DNA 进行编程,使其以不同的方式组装,从而赋予合成细胞不同的功能。它们也没有被锁定在一个目的上改变溶液的温度可以触发不同的配置。研究小组说,将不同的肽或DNA序列组合在一起,就能制造出更大规模的可编程组织。虽然它们没有活细胞那么复杂,但这些合成细胞更容易操作,而且能在天然细胞无法处理的条件下工作。弗里曼说:"合成细胞即使在122 °F(50 °C)的温度下也能保持稳定,这为在通常不适合人类生存的环境中制造具有超常能力的细胞提供了可能。"研究小组表示,当这些可编程细胞与其他合成细胞技术相结合时,可用于再生医学、药物输送系统和诊断工具等应用。这项研究发表在《自然-化学》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人