科学家开发出更高效的从空气中捕捉淡水的新方法 灵感来自早餐麦片圈

科学家开发出更高效的从空气中捕捉淡水的新方法 灵感来自早餐麦片圈 Cheerios效应是一个小漂浮物在液体表面聚集的过程。研究人员对这一过程进行了优化,以提高高效集水系统的凝结率。资料来源:2024 KAUST; Ivan Gromicho领导这项研究的丹-丹尼尔实验室研究员马库斯-林说:"我们对设计能促进水凝结的表面很感兴趣,水凝结具有重要的传热和集水应用价值。在典型的固体表面上,凝结的水滴粘附在表面上,运动量极小。想想水在冰冷的苏打水罐上凝结的情形。"只有当液滴长到足够大时,重力才会把它们往下拉,这时液滴才会移动。"丹尼尔、林和他们的合作者的想法是,添加一层薄薄的油膜可以润滑表面,使液滴高度移动,从而为进一步的液滴凝结腾出空间,提高凝结率,这个想法奏效了,但液滴移动的复杂方式却完全出乎意料。一旦液滴增长到临界大小,它们就开始以一种类似于精心编排的舞蹈的独特模式在油中移动。林说:"它们最初以蛇形方式运动,然后过渡到圆周运动,然后再返回。"这些运动的尺度从微米到几厘米不等,持续时间长达数小时。"研究人员捕捉到水滴在油性薄膜上凝结时表现出复杂的集体运动,在蛇形运动和圆形运动之间摆动。资料来源:2024 KAUST; Fauzia Wardani这一过程的驱动力是,就像牛奶中的麦片一样,漂浮在油中的水滴会被吸引向它们的邻居。较大的水滴在运动过程中会吞噬路径上较小的水滴,从而释放出能量。当局部油膜耗尽时,移动的液滴会重新分配油膜,并从蛇形运动转为圆周运动。一旦局部油膜恢复,蛇形运动又会重新开始。丹尼尔说,随着淡水资源面临的压力越来越大,人们开始广泛寻求这种无需能量输入、通过简单冷凝就能从空气中高效捕获水的装置。他说:"通过优化冷凝液滴的集体运动,我们可以大大提高冷凝率,从而设计出更高效的集水系统。"研究小组计划进一步探索液滴运动的驱动机制,特别是研究从蛇形运动到圆形运动的过渡。"另一个关键方面是探索潜在的应用,特别是在传热增强和水收集方面。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

"麦片效应"启发科学家开发出一种更高效的集水系统

"麦片效应"启发科学家开发出一种更高效的集水系统 沙特阿拉伯阿卜杜拉国王科技大学(KAUST)的研究人员在表面上涂上一层润滑油膜,发现它能使水滴更快地结合,类似于"麦片效应"。领导这项研究的马库斯-林说:"我们对设计能促进水凝结的表面很感兴趣,水凝结具有重要的传热和集水应用价值。想想水在冰冷的汽水罐上凝结的情形。水滴只有长到足够大,重力把它们拉下来才能移动。"研究人员认为,添加一层薄薄的油膜可以润滑表面,使水滴移动得更快,为水滴的进一步凝结腾出空间,从而提高凝结率。这确实奏效了。但水滴的反应却让他们大吃一惊。他们观察到,大小从几十微米到几毫米不等的凝结水珠自发地跳起了复杂的集体"舞蹈"。液滴以蛇形方式运动,直到润滑剂耗尽,才转为圆周运动。当移动的液滴不断在表面重新分配润滑剂时,它们又重新开始了曲折的舞蹈。林说:"它们最初以蛇形方式运动,然后过渡到圆周运动,然后再返回。这些运动的尺度从微米到几厘米不等,持续时间长达数小时。"就像牛奶中的麦片一样,油中的冷凝液滴也会被邻近的液滴吸引。较大的液滴在与路径上较小的液滴合并时释放出的能量推动了它们的自我推进。研究人员说,随着淡水资源的压力越来越大,能够通过简单的冷凝从空气中有效捕捉水而不需要输入能量的装置受到广泛推崇。这在沙特阿拉伯等干旱地区尤为重要。林说:"通过优化冷凝液滴的集体运动,我们可以大大提高冷凝率,从而设计出更高效的集水系统。"研究人员计划进一步探索水滴复杂舞动的驱动因素,特别是从蛇形运动到圆形运动的转变。这项研究发表在《物理评论快报》杂志上。 ... PC版: 手机版:

封面图片

钙过量 - 科学家开发出杀死癌细胞的新方法

钙过量 - 科学家开发出杀死癌细胞的新方法 钙离子在细胞功能中起着至关重要的作用,但如果钙离子含量过高,就会对细胞造成危害。研究人员最近开发出一种化合物,可通过调节细胞内的钙离子流入来靶向摧毁肿瘤细胞。这种创新方法利用了肿瘤组织内已有的钙离子,无需外部钙源。《Angewandte Chemie》杂志上发表的一篇论文详细介绍了这一研究成果。生物细胞需要钙离子来维持线粒体(细胞的动力室)的正常运转。然而,如果钙离子过多,线粒体过程就会失衡,细胞就会窒息。由韩国首尔梨花女子大学的尹珠英(Juyoung Yoon)领导的研究小组与来自中国的研究小组一起,利用这一过程开发出了一种协同抗肿瘤药物,它可以打开钙离子通道,从而在肿瘤细胞内引发致命的钙离子风暴。研究人员瞄准了两个通道,第一个是外膜上的通道,另一个是内质网中的钙通道,内质网也是一个储存钙离子的细胞器。位于外膜的通道在暴露于大量活性氧(ROS)时打开,而内质网中的通道则被一氧化氮分子激活。为了产生能打开外膜钙通道的 ROS,研究人员使用了染料吲哚菁绿。这种生物活性剂可通过近红外线照射激活,不仅能引发导致 ROS 的反应,还能使环境升温。研究小组解释说,局部高温会激活另一种活性剂 BNN-6 释放一氧化氮分子,从而打开内质网中的通道。在肿瘤细胞系试验成功后,研究小组又在植入肿瘤的小鼠体内测试了一种注射制剂。为了创造出一种生物兼容的复合药物,研究人员将活性成分装入了微小的改性多孔硅珠中,这种硅珠对人体无害,但能被肿瘤细胞识别并转运到细胞内。将这些微珠注入小鼠血液后,研究人员观察到药物在肿瘤内积聚。照射近红外线成功地触发了作用机制,接受这种制剂的小鼠几天后肿瘤就消失了。作者强调,这种离子流入方法可能也适用于相关的生物医学研究领域,因为类似的机制可以激活不同于钙离子通道的离子通道,从而找到新的治疗方法。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家发现浩瀚宇宙中“定位”太阳新方法

中国科学家发现浩瀚宇宙中“定位”太阳新方法 记者从位于内蒙古自治区正镶白旗的中国科学院国家空间中心明安图野外科学观测研究站获悉,由中国科学院国家空间科学中心研究员颜毅华领衔的科研团队,发现一种新的可用于明安图射电频谱日像仪(MUSER)图像位置校准的方法,这种方法可在浩瀚宇宙中“定位”太阳准确位置。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

物理学家发现一种作用于在超疏水表面上运动的水滴的新力

物理学家发现一种作用于在超疏水表面上运动的水滴的新力 物理学助理教授 Matilda Backholm 的独特微吸管力传感器技术可探测超疏水材料与水滴之间的微小作用力。资料来源:Matilda Backholm/阿尔托大学在一种名为黑硅的材料表面,微小的鸿沟形成了一片锥形锯齿状山峰。黑硅通常用于太阳能电池技术,同时也是研究水滴行为物理学的工具。黑硅是一种超疏水材料,这意味着它能排斥水。由于水具有独特的表面张力特性,水滴在黑硅等纹理材料上滑行时,会附着在下面的空气薄膜间隙上。当水滴缓慢移动时,这种方法非常奏效水滴在滑动过程中毫无阻碍。但是,当液滴移动得更快时,某种未知的力量似乎会拉扯它的底部。这让物理学家们感到困惑,但现在来自阿尔托大学和巴黎 ESPCI 的一组研究人员给出了解释,而且他们还得到了相关数据的支持。阿尔托大学助理教授玛蒂尔达-巴克霍尔姆(Matilda Backholm)是这篇论文的第一作者,该论文详细介绍了这些发现,并于4月15日发表在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)上。她是在应用物理系罗宾-拉斯(Robin Ras)教授的软物质和润湿小组担任博士后研究员期间完成这项研究的。阿尔托大学研究小组对空气剪切力的解决方案是在黑色硅表面建立支柱,然后将其蚀刻成具有类似纹理的帽盖。资料来源:Maja Vuckovac/阿尔托大学"在观察水与表面的相互作用时,通常有三种力在起作用:接触线摩擦力、粘性损失和空气阻力。然而,水滴在黑硅等高滑表面上的运动会产生第四种力。这种运动实际上会对下面的空气产生剪切作用,从而对液滴本身产生类似阻力的作用。这种剪切力以前从未被解释过,我们是第一个发现它的人,"Backholm 说。流体物理学和软物质物理学的相互作用十分复杂,要将其简化为简单的公式具有挑战性。但是,Backholm 成功地开发出了测量这些微小力的技术,解释了这些力的作用原理,并最终提供了完全消除阻力的解决方案。空气剪切效应创造出更好的超疏水表面将使世界上的运输系统更符合空气动力学,医疗设备更能保持无菌,并普遍提高任何需要憎液表面的滑爽性。黑硅利用水的特定表面张力,最大限度地减少水滴与表面的接触。蚀刻在基底上的圆锥体使水滴在空气薄膜间隙上滑行,这种间隙被称为 Plastron。但与直觉相反的是,使疏水表面偏转水滴的机制也导致了 Backholm 论文中概述的剪切效应。用微吸管力传感器探测水滴。图片来源:Matilda Backholm/阿尔托大学"这个领域一直在制造超滑表面,通过缩小锥体的长度尺度使其更小更多,但没有人停下来意识到,嘿!我们实际上是在和自己作对。"Backholm说:"实际上,在黑硅表面蚀刻更短的锥体会产生更大的空气剪切效应。"其他研究人员也注意到了这种力的存在,但却无法解释。Backholm 的发现促使人们重新考虑超滑表面的设计方式。她的团队采取的变通方法是在黑硅表面上增加带有纹理帽的高锥体,以进一步减小液滴的总接触表面积。"这项工作建立在软物质和润湿研究小组关于超疏水表面的丰富专业知识基础之上。Ras 说:"很少有机会能完全解释润湿动力学所涉及的微观作用力的微妙之处,但这篇论文恰恰做到了这一点。"专业测量技术Backholm 采用了一种独特的微吸管测量技术来测量作用在水滴上的力。她是这些微吸管力传感器方面的专家,曾用它们测量过植物根系的生长动态、中观虾群的游动行为,现在又用它们来观察移动水滴中的力。通过艰苦的微调,她利用这一技术在确定剪切效应方面取得了突破性进展。Backholm 对液滴和探针进行摆动,以探测下方微妙的拉扯力。"我们还通过对碳酸液滴进行同样的测试,排除了接触线存在其他作用力的可能性。这些液滴不断释放出二氧化碳,使其悬浮在所处表面的上方。"Backholm 说:"即便如此,我们还是在一定速度下测得了剪切效应,最终证实这种力的作用与它与黑硅表面的接触无关。"Backholm预计这些发现将进一步帮助物理学家和工程师开发出性能更好的疏水表面,他现在领导着应用物理系的生命物质研究小组。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法 自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC 国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(Rebecca Leane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多传统探测器可能无法看到。"有鉴于此,利恩和 SLAC 博士后研究员阿尼尔班-达斯找到了 SLAC 的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在 SLAC 工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是 SLAC 研究的一个非常好的协同效应。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出更便宜、更清洁、更环保的氨生产新方法

科学家开发出更便宜、更清洁、更环保的氨生产新方法 这幅图画展示了以锂为媒介将N2转化为氨的过程。图中是在电沉积锂(黑色瓷砖)上发生的一系列反应。在高压下,氮气(添加蓝色块)在锂上发生化学吸附,随后质子化(添加白色块)形成 NHx,最终生成氨气并回收锂。这一循环过程形成了产生氨的催化节奏。这项研究强调了压力和电位在控制固体电解质界面的结构和稳定性以实现氨合成方面的重要性。资料来源:Crystal Price 和 Joseph Gauthier,德克萨斯理工大学;Meenesh Singh,伊利诺伊大学芝加哥分校这一过程被称为锂介导的氨合成,它将氮气和乙醇等供氢流体与带电的锂电极结合在一起。氮原子不会在高温高压下分解氮气分子,而是粘附在锂上,然后与氢结合生成氨分子。该反应可在低温下进行,而且具有再生性,每生产一轮氨,就能恢复原来的材料。"有两个循环会发生。一个是氢源的再生,第二个是锂的再生,"UIC 化学工程副教授辛格说。"由于循环过程的存在,这一反应中充满了交响乐。我们所做的就是以一种更好的方式来理解这种交响乐,并尝试以一种非常有效的方式来调节它,这样我们就能产生共振,使其更快地进行。"辛格实验室在《ACS 应用材料与界面》( ACS Applied Materials & Interfaces)杂志封面上发表的一篇论文介绍了这一工艺,这是辛格实验室在寻求更清洁的氨方面的最新创新。在此之前,他的研究小组开发出了利用阳光和废水合成这种化学物质的方法,并制造出了一种电气化铜网筛,减少了制造氨气所需的能量。他们的最新研究成果建立在一种并不新奇的反应之上。科学家们对它的了解已有近一个世纪。"基于锂的方法实际上可以在任何有机化学教科书中找到。这是众所周知的。"辛格说。"但是,让这种循环高效、有选择性地运行,从而达到经济上可行的目标,这是我们的贡献"。这些目标包括高能效和低成本。辛格表示,如果规模扩大,该工艺生产氨的成本约为每吨 450 美元,比以前的锂基方法和其他拟议的绿色方法便宜 60%。但是,选择性也很重要,因为许多使氨生产更清洁的尝试最终都产生了大量无用的氢气。辛格小组的研究成果是首批在选择性和能源使用方面达到能源部氨工业化生产标准的成果之一。辛格还表示,该工艺可以在模块化反应器中进行,通过太阳能电池板或其他可再生能源供电,并用空气和水为反应提供原料,可以使该工艺更加绿色环保。该工艺还有助于实现另一个能源目标将氢用作燃料。实现这一目标一直受制于运输高可燃性液体的困难。"产生氢气、运输氢气并将氢气输送到氢气泵站,然后将氢气输送到汽车,这非常危险,"辛格说。"氨可以作为氢的载体。它的运输成本很低,而且很安全,在目的地可以把氨转化回氢。"目前,科学家们正与通用氨公司(General Ammonia Co.UIC)的技术管理办公室已为该工艺申请了专利。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人