科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法 自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC 国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(Rebecca Leane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多传统探测器可能无法看到。"有鉴于此,利恩和 SLAC 博士后研究员阿尼尔班-达斯找到了 SLAC 的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在 SLAC 工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是 SLAC 研究的一个非常好的协同效应。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

中国建成世界最大最深的暗物质实验室

中国建成世界最大最深的暗物质实验室 中国锦屏地下实验室(CJPL)自2010年投运,经过三年修建,中国锦屏地下实验室二期(CJPL-II)于2023年12月投入科学运行。其33万立方米的超大空间超过了之前深度和体积的纪录保持者意大利的格兰萨索国家实验室(LNGS)。更大的空间让粒子和天体物理氙探测实验(PandaX)和中国暗物质实验(CDEX)这类项目可以再次升级。芝加哥大学的物理学家Juan Collar说:“他们在十年内完成的工作令人赞叹。”暗物质一直是科学界的一个谜。物理学家经过计算发现,可见物质产生的引力太弱,无法阻止快速移动的星系飞散。因此,他们提出理论,认为暗物质就像不可见的胶水,把整个宇宙黏在一起。虽然暗物质理应无处不在,但事实证明直接观测到暗物质很难,因为理论上暗物质与普通物质不会相互作用,也不会释放、反射或吸收光。之前有人提出探测到了暗物质,但反驳观点认为,这些实验可能受到了其他信号的混淆。科学荣誉等候着第一个探测到暗物质的人,这也是粒子物理学的最大任务之一,在CDEX合作组工作的台湾中央研究院的物理学家Henry Tsz-King Wong说道。山下之光寻找暗物质的最佳场所是地下,因为岩体能替探测器挡掉背景“噪音”,比如从太空向地球洒落的高能粒子宇宙射线就会淹没潜在的暗物质信号,意大利国家核物理研究院的物理学家Marco Selvi说,想从地球表面探测暗物质就像在一个人声鼎沸的体育场里辨认一个小孩发出的微弱声音。在深地环境下,CJPL-II 的宇宙线通量仅为地表的0.000001%,使其成为世界上屏蔽效果最好的地下实验室之一。实验室的墙体还包裹了由橡胶、混凝土等材料混合而成的10厘米厚的保护结构,能防止周围岩体释放的水和放射性氡气,以免暗物质探测实验受到干扰。实验室的研究团队已经在利用新增的空间了。在CJPL-II施工期间,PandaX团队将其探测器从120公斤液氙升级到4吨。当潜在的暗物质颗粒与氙原子发生碰撞,其能量就会转变成能被光电传感器探测到的闪光。该探测器很快将赶上LNGS的XENONnT实验(8.6吨)以及美国桑福德地下研究所的LUX-ZEPLIN实验(7吨)。PandaX-4T探测器位于一个900立方米的水池中,这是为了能进一步屏蔽杂散粒子的干扰,团队成员、上海交通大学物理学家周宁表示,“灵敏度提升后,我们就能用探测器测试不同类型的相互作用。”该团队最终想要打造一个40-50吨的氙探测器,有望与以40吨为目标的达尔文实验(DARWIN Experiment)相抗衡。与此同时,CDEX团队也在部署一台锗探测器,锗探测器能寻找比氙实验寻找的质量更小的潜在暗物质粒子,CDEX团队成员、北京清华大学物理学家岳骞说。CDEX探测器已经从1公斤锗升级到10公斤锗,并计划打造一个1吨量级的探测器阵列。如果一个暗物质粒子撞到了这个探测器,其相互作用就应产生电荷,这个电荷会转换为电信号。岳骞希望CDEX能吸引更多国际合作,目前已经有印度和土耳其的研究人员加入。Selvi说,虽然各国对暗物质的搜寻非常激烈,但世界上多个地下实验室共同开展相似实验能让研究人员比对结果。2022年,PandaX团队便使用一种类似手段确认了LNGS的XENON 实验的结果该实验发现2020年XENON探测到的一个意外信号来自背景噪音而不是暗物质。Collar认为,新的方法和理论也将推动暗物质的研究,而不是用更大更灵敏的探测器打败对手。他说,“已经有很多重复的版本了。”周宁说,下一个十年里,CJPL-II团队将继续提升探测器的灵敏度。他也希望全球暗物质研究社区能共享数据并将CJPL-II的数据与他们自己的数据结合。他说:“我们还有很多工作要做。” ... PC版: 手机版:

封面图片

黑洞与黑暗的启示引力波提供暗物质构成的新线索

黑洞与黑暗的启示引力波提供暗物质构成的新线索 从地球向大麦哲伦云观测到的黑洞引起的微透镜事件的艺术家印象图。位于大麦哲伦云的一颗背景恒星的光线被银河系光晕中的一个推定原始黑洞(透镜)弯曲,从地球上观测时被放大。微透镜导致背景恒星的亮度发生极具特征性的变化,从而可以确定透镜的质量和距离。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图像:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。研究结果发表在《自然》 和《 天体物理学杂志增刊系列》上的两篇文章中 。这项研究是由华沙大学天文台 OGLE(光学引力透镜实验)调查的科学家进行的。各种天文观测表明,我们可以看到或触摸到的普通物质只占宇宙总质量和总能量的 5%。在银河系中,恒星中每一磅普通物质就对应 15 磅"暗物质",它们不发射任何光,只通过引力相互作用。"暗物质的本质仍然是一个谜。大多数科学家认为它是由未知的基本粒子组成的,"两篇文章的第一作者、华沙大学天文台的 Przemek Mróz 博士说。"不幸的是,尽管经过数十年的努力,但没有任何实验(包括利用大型强子对撞机进行的实验)发现可能是暗物质的新粒子"。通过银河系光环看到的大质量天体对大麦哲伦云的预期微透镜事件与观测到的微透镜事件的对比。如果宇宙中的暗物质由推定的原始黑洞组成,那么在 2001-2020 年的 OGLE 勘测中将会探测到 500 多个微透镜事件。而实际上,OGLE项目只探测到了13次微光事件,很可能是由普通恒星引起的。图片来源:J. Skowron / OGLE。大麦哲伦云背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。原始黑洞的奥秘和潜力自 2015 年首次探测到一对黑洞合并产生的引力波以来,LIGO和室女座实验已经探测到 90 多个此类事件。天文学家注意到,LIGO 和室女座探测到的黑洞质量(20-100 个太阳质量)通常比银河系中已知的黑洞质量(5-20 个太阳质量)大得多。Mróz 博士说:"解释为什么这两个黑洞群如此不同,是现代天文学最大的谜团之一。"一种可能的解释是,LIGO 和室女座探测器发现了可能在宇宙早期形成的原始黑洞群。50 多年前,英国著名理论物理学家斯蒂芬-霍金(Stephen Hawking)首次提出了原始黑洞的存在,苏联物理学家雅科夫-泽尔多维奇(Yakov Zeldovich)也独立提出了这一观点。"我们知道,早期宇宙并不是理想的均质宇宙微小的密度波动产生了现在的星系和星系团,"Mróz 博士说。"类似的密度波动如果超过临界密度对比,就可能坍缩并形成黑洞。"自从首次探测到引力波以来,越来越多的科学家猜测,这种原始黑洞可能构成暗物质的重要部分,如果不是全部的话。大麦哲伦云被银河系光环中的大质量天体透镜化的艺术印象。图片来源:J. Skowron / OGLE利用微透镜技术探索暗物质幸运的是,这一假设可以通过天文观测得到验证。我们观测到银河系中存在大量暗物质。如果它是由黑洞组成的,我们就应该能够在我们的宇宙邻域中探测到它们。鉴于黑洞不会发出任何可探测到的光,这可能吗?根据爱因斯坦的广义相对论,光线可能会在大质量天体的引力场中发生弯曲和偏转,这种现象被称为引力微透镜。"当三个物体地球上的观测者、光源和透镜在太空中几乎理想地对齐时,就会发生微透镜现象,"OGLE 勘测的首席研究员 Andrzej Udalski 教授说。"在微透镜事件中,光源的光线可能会发生偏转和放大,我们观测到光源的光线会暂时变亮。"变亮的持续时间取决于透镜天体的质量:质量越大,时间越长。太阳质量天体的微透镜事件通常会持续数周,而质量比太阳大 100 倍的黑洞的微透镜事件则会持续数年。利用引力微透镜研究暗物质的想法并不新鲜。20 世纪 80 年代,波兰著名天体物理学家博赫丹-帕钦斯基首次提出了这一想法。他的想法激发了三大实验的启动:波兰的 OGLE、美国的 MACHO 和法国的 EROS。这些实验的首批结果表明,质量小于一个太阳质量的黑洞可能只占暗物质的不到10%。不过,这些观测对时间尺度极长的微透镜事件并不敏感,因此对大质量黑洞也不敏感,类似于最近用引力波探测器探测到的那些黑洞。智利拉斯坎帕纳斯天文台(由卡内基科学研究所运营)夜景。OGLE 项目观测站以及大麦哲伦云和小麦哲伦云。图片来源:Krzysztof UlaczykOGLE 的长期观察研究在《天体物理学杂志增刊系列》(Astrophysical Journal Supplement Series)的这篇新文章中,OGLE天文学家介绍了对位于附近一个名为大麦哲伦云的星系中的近8000万颗恒星进行的长达近20年的光度监测结果,以及对引力微透镜事件的搜索。所分析的数据是在2001年至2020年OGLE项目的第三和第四阶段收集的。Udalski 教授说:"这组数据提供了现代天文学史上对大麦哲伦云中恒星进行的时间最长、规模最大、最精确的测光观测。"第二篇文章发表在《自然》杂志上,讨论了这一发现的天体物理学后果。Mróz博士说:"如果银河系中的所有暗物质都是由10个太阳质量的黑洞组成,那么我们本应探测到258个微透镜事件。对于 100 个太阳质量的黑洞,我们预计会有 99 个微透镜事件。1000个太阳质量的黑洞27个微透镜事件。"相比之下,OGLE 天文学家只发现了 13 个微透镜事件。他们的详细分析表明,所有这些事件都可以用银河系或大麦哲伦云本身的已知恒星群来解释,而不是用黑洞来解释。Mróz博士说:"这表明大质量黑洞最多只能构成暗物质的百分之几。"详细计算表明,10 个太阳质量的黑洞可能最多占暗物质的 1.2%,100 个太阳质量的黑洞占暗物质的 3.0%,1000 个太阳质量的黑洞占暗物质的 11%。Udalski 教授说:"我们的观测结果表明,原始黑洞不可能占暗物质的很大一部分,同时也能解释 LIGO 和室女座观测到的黑洞合并率。"因此,LIGO 和室女座探测到的大质量黑洞需要其他解释。根据一种假设,它们是大质量、低金属度恒星演化的产物。另一种可能是,在球状星团等高密度恒星环境中,质量较小的天体发生了合并。Udalski 教授补充说:"我们的研究成果在未来几十年内都会出现在天文学教科书中。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现利用营养物质有效治疗癌症的新方法

科学家发现利用营养物质有效治疗癌症的新方法 一个国际研究小组开发出一种治疗癌症的新方法,利用营养物质重新激活癌细胞中休眠的代谢途径。研究小组利用一种广泛存在的氨基酸酪氨酸,以纳米药物的形式输送,改变了黑色素瘤(一种严重的皮肤癌)的新陈代谢,从而抑制了癌症的生长。澳大利亚是世界上皮肤癌发病率最高的国家。这种新方法可以与现有疗法相结合,更好地治疗黑色素瘤。这项技术还有可能治疗其他类型的癌症。这项研究由复旦大学的卜文波教授和悉尼科技大学的金大勇教授领导,最近发表在著名期刊《自然纳米技术》(NatureNanotechnology)上。酪氨酸在生物体内的生物利用率有限。然而,研究人员利用一种新的纳米技术,将酪氨酸包装成被称为纳米微粒的微小颗粒,这种微粒会被癌细胞膜吸引,并很容易分解,从而促进吸收。研究小组随后在小鼠和实验室中的人源黑色素瘤细胞中测试了这种创新疗法,发现酪氨酸纳米微粒重新激活了休眠代谢途径,引发了黑色素合成,抑制了肿瘤生长。"不受控制的快速生长是癌细胞区别于正常细胞的一个关键特征。在癌细胞中,一些新陈代谢途径被过度激活,而另一些则被抑制,从而为快速扩散创造了必要的环境,"金教授说。"虽然此前已开发出一些基于代谢的癌症药物,如阻碍乳腺癌中雌激素合成的芳香化酶抑制剂和针对各种癌症中糖酵解的HK2抑制剂,但这些药物都是通过抑制过度激活代谢途径来发挥作用的。""我们的研究首次表明,通过重新激活处于休眠状态的新陈代谢途径,可以阻止癌症的发生。而这可以通过使用简单的营养物质来实现,如氨基酸、糖和维生素,它们安全、易得、耐受性好,"卜教授说。不同类型的癌症会对不同的营养物质做出反应。黑色素瘤细胞是从产生黑色素的皮肤细胞黑色素细胞发展而来的。黑色素的生成需要酪氨酸,酪氨酸能刺激黑色素的生成,因此对黑色素瘤有效。黑色素合成的重新激活迫使黑色素瘤细胞减少糖酵解(将糖转化为能量的过程),这被认为是其抗癌作用的机制。黑色素瘤细胞也容易受到热应力的影响。研究人员发现,通过将酪氨酸纳米簇治疗与近红外激光治疗相结合,他们能够在六天后根除小鼠体内的黑色素瘤,而且在研究期间黑色素瘤不会再次发生。研究结果表明,利用纳米药物治疗癌症有望开辟一个新领域。编译自/ScitechDaily ... PC版: 手机版:

封面图片

暗物质动力学探索奇异的卫星星系“Crater II”

暗物质动力学探索奇异的卫星星系“Crater II” 加州大学河滨分校物理学和天文学教授于海波说:"自2016年发现Crater II以来,人们曾多次尝试重现它的不寻常特性,但事实证明这非常具有挑战性。"他的团队在最近发表于《天体物理学期刊通讯》(TheAstrophysical Journal Letters)的一篇论文中对Crater II的起源做出了解释。卫星星系是一个较小的星系,它围绕着一个较大的主星系运行。暗物质占宇宙物质的85%,它可以在引力的作用下形成一个球形结构,称为暗物质晕。暗物质晕看不见摸不着,它渗透并包围着像Crater II这样的星系。Crater II极其寒冷,这表明它的光环密度很低。我们的银河系被大约 50 个矮星系包围着。这些星系中的大多数只能通过望远镜来识别,并以它们出现在天空中的星座来命名(例如天龙座、雕刻家座或狮子座)。不过,两个最明显的矮星系被称为大麦哲伦云(LMC)和小麦哲伦云(SMC),它们很容易被肉眼看到。资料来源:ESA/Gaia/DPACCrater II在银河系的潮汐场中演化,经历了与宿主星系的潮汐相互作用,类似于地球海洋因月球引力而经历潮汐力。理论上,潮汐相互作用可以降低暗物质晕的密度。然而,对Crater II环绕银河的轨道的最新测量结果表明,潮汐相互作用的强度太弱,不足以降低卫星星系的暗物质密度,从而与其测量结果保持一致如果暗物质是由冷的、无碰撞的粒子构成的,正如流行的冷暗物质理论(或称CDM)所预期的那样。另一个谜题是,当卫星星系在银河系的潮汐场中演化时,潮汐相互作用会缩小卫星星系的体积,因此Crater II怎么会有这么大的体积呢?于和他的团队引用了一种不同的理论来解释Crater II的特性和起源。该理论被称为"自相互作用暗物质"(self-interacting dark matter,简称SIDM),它可以令人信服地解释各种暗物质的分布。该理论认为,暗物质粒子通过暗力进行自我相互作用,在靠近星系中心的地方相互发生强烈碰撞。于说:"我们的工作表明,SIDM可以解释Crater II的不寻常特性。关键的机制是暗物质的自我相互作用使Crater II的光环热化,并产生一个浅密度核心,也就是说,暗物质密度在小半径处是扁平的。相反,在CDM光环中,密度会向星系中心急剧增加。"在 SIDM 中,与Crater II轨道测量结果一致的相对较小的潮汐相互作用强度就足以降低Crater II的暗物质密度,这与观测结果是一致的。"重要的是,星系的大小在SIDM光环中也会扩大,这就解释了Crater II的巨大体积。暗物质粒子在有芯的SIDM光环中比在'脆弱'的CDM光环中结合得更松散。我们的工作表明,SIDM比CDM更能解释Crater II的起源。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

科学家们设计了一种3D打印真空系统来探测暗物质和探索暗能量

科学家们设计了一种3D打印真空系统来探测暗物质和探索暗能量 诺丁汉大学(University of Nottingham)的研究人员开发出一种新方法,利用3D打印真空系统来探测暗物质,并有可能揭示暗能量的本质。该系统操纵气体密度,利用超冷锂原子来探索标量场的影响,旨在观察标量场相变过程中形成的畴壁缺陷。诺丁汉大学实验室中的激光光子系统。资料来源:诺丁汉大学物理学院的克莱尔-伯拉格(Clare Burrage)教授是这项研究的主要作者之一,她解释说:"我们可以看到它们对宇宙行为的影响,但我们不知道它们是什么。人们试图测量暗物质的一种方法是引入一种叫做标量场的粒子。暗物质是星系中缺失的质量,暗能量可以解释宇宙膨胀加速的原因。我们正在寻找的标量场可能是暗物质,也可能是暗能量。通过引入超冷原子并研究其产生的影响,我们或许能够解释宇宙膨胀加速的原因,以及这是否会对地球产生任何影响。"研究人员建造三维容器的理论基础是,具有双井电势和直接物质耦合的轻标量场会发生密度驱动的相变,从而形成畴壁。伯拉格教授继续说道:"当密度降低时,就会形成缺陷这类似于水冻结成冰时,水分子是随机的,当它们冻结时,就会形成晶体结构,分子随机排列,有的排列成一条线,有的排列成另一条线,这就形成了断层。当密度变低时,标量场中也会发生类似的情况。你无法用肉眼看到这些断层线,但如果粒子穿过这些断层线,可能会改变它们的轨迹,这些缺陷就是暗墙,可以证明标量场理论这些场存在或不存在。"为了检测这些缺陷或暗壁,研究小组创造了一种特殊设计的真空,他们将在新实验中使用这种真空,模拟从高密度环境到低密度环境的移动。利用新装置,他们将用激光光子把锂原子冷却到接近绝对零度的-273,在这个温度下,锂原子具有量子特性,从而使分析更加精确和可预测。物理学院副教授露西娅-哈克穆勒(Lucia Hackermueller)领导了实验室实验的设计工作,她解释说:"我们用作真空室的 3D 打印容器是根据暗壁的理论计算建造的,这创造了我们认为能够捕获暗物质的理想形状、结构和质地。为了成功证明暗壁已被捕获,我们将让冷原子云穿过这些暗壁。然后,原子云会发生偏转。为了冷却这些原子,我们会向原子发射激光光子,从而降低原子中的能量这就好比用雪球让大象减速!"团队花了三年时间建立了这套系统,他们希望在一年内取得成果。哈克穆勒博士补充说:"无论我们是否证明了暗墙的存在,这都将是我们在理解暗能量和暗物质方面迈出的重要一步,也是一个很好的例子,说明如何设计一个控制良好的实验室实验,以直接测量与宇宙相关但无法观测到的效应。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

科学家可能在海底探测到有记录以来最强中微子

科学家可能在海底探测到有记录以来最强中微子 中微子物理学家 João Coelho 透露,地中海在建的宇宙深渊天体粒子研究(ARCA)天文台可能发现了有史以来能量最高的中微子。ARCA是欧洲立方千米中微子望远镜(KM3NeT)项目的一部分。KM3NeT 的主要目标是发现并持续观察宇宙中的高能中微子的来源,测定中微子的质量等级。ARCA 被部署在意大利西西里岛东南3500米深的海底,由串联有光学模块的垂直绳弦阵列构成。每根绳弦长 800 米,串联有 18 个探测器单元直径约为半米的有机玻璃球,内置光探测器,每个探测器只能探测到很少的光子。目前阵列内包含 28 串绳弦,ARCA 团队希望到 2028 年能将其扩展到 230 串。它并不能直接“看”到中微子。当中微子撞击空气、水或下层岩石分子时,产生一种高能带电粒子μ子,当它穿过探测器时,会产生其他带电粒子簇射,从而被捕捉到。Coelho 表示,超过 1/3 的 ARCA 传感器记录到了与 μ子水平穿过探测器一致的闪光。这些μ子由来自低于水平线一度的中微子产生。该粒子的能量可能高达数十 PeV,这将使其成为有史以来探测到的能量最高的中微子。 via Solidot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人