量子模拟突破:原子间距缩小至50纳米

量子模拟突破:原子间距缩小至50纳米 《科学》杂志论文截图在量子力学领域,邻近性占据主导地位。原子越近,它们的相互作用就越强。为了操纵和排列原子,科学家通常先将一团原子云冷却到接近绝对零度,然后使用激光束系统将原子限制在光陷阱中。此次,研究团队首先将原子云冷却到大约1微开尔文,仅比绝对零度高一点点,此时原子几乎处于静止状态。然后,他们用激光将冷冻粒子移动到所需位置。研究人员开发出一种技术,可以将原子排列间隔缩小至50纳米。图片来源:物理学家组织网研究人员使用了两束具有不同频率(颜色)和偏振角度的激光。当两束光穿过超冷原子云时,原子会沿着两束激光的偏振方向调整自旋方向,使光束产生两组相同原子,但是自旋相反。每束激光形成一个驻波,即电场强度在空间上呈周期性变化的图案,其空间周期为500纳米。由于它们的偏振不同,每个驻波都会吸引和聚集两组原子中的一组,这取决于它们的自旋。激光可重叠和调谐,使得它们各自的峰值之间距离只有50纳米,这意味着每个激光峰值所吸引的原子将以同样的50纳米隔开。实验中所用原子为镝,镝是自然界最具磁性的原子之一。研究团队用这种新方法操纵两层镝原子,并将两层之间的距离精确地定位为50纳米。在这种极近距离下,磁相互作用比两层之间相隔500纳米的情况强1000倍。研究团队发现,因原子接近而增强的磁力会导致“热化”,即热量从一层传递到另一层,以及各层之间的同步振荡。当层之间的距离拉大,这些效应就会逐渐减弱。研究人员表示,新技术还可用其他原子来研究量子现象。他们计划用该技术来操纵原子,使其形成一个纯磁性量子门,这是一种新型量子计算机的关键组成部分。 ... PC版: 手机版:

相关推荐

封面图片

麻省理工学院研究人员实现前所未有的原子接近度

麻省理工学院研究人员实现前所未有的原子接近度 麻省理工学院的物理学家们开发出了一种技术,可以将原子(用箭头表示的球体)排列得比以前更紧密,最小可达 50 纳米。该研究小组计划利用这种方法将原子操纵到可以产生第一个纯磁性量子门的配置中这是新型量子计算机的关键构件。在这张图片中,磁相互作用由彩色线条表示。图片来源:研究人员提供;麻省理工学院新闻他们通常的做法是将原子冷却到静止状态,然后用激光将粒子排列到相距 500 纳米的位置这个限制是由光波长决定的。现在,麻省理工学院的物理学家们开发出了一种技术,可以将原子排列得更近,最小仅为 50 纳米。一个红血球的宽度约为 1000 纳米。物理学家在镝实验中展示了这种新方法,镝是自然界中磁性最强的原子。他们利用新方法操纵了两层镝原子,并将两层原子精确定位在 50 纳米之间。在这种极端接近的情况下,磁相互作用的强度是相隔 500 纳米的两层原子的 1000 倍。不同颜色的激光用于冷却和捕获镝原子。图片来源:研究人员提供更重要的是,科学家们能够测量原子接近所产生的两种新效应。它们增强的磁力导致了"热化",即热量从一层传递到另一层,以及层间的同步振荡。当原子层之间的距离越远,这些效应就越弱。麻省理工学院约翰-麦克阿瑟物理学教授沃尔夫冈-凯特尔(Wolfgang Ketterle)说:"我们已经把原子的间距从 500 纳米提高到 50 纳米,可以利用这一点做很多事情。在 50 纳米处,原子的行为有了很大的不同,我们正在进入一个新的领域。"凯特尔和他的同事说,这种新方法可以应用于许多其他原子,以研究量子现象。该研究小组计划利用这种技术将原子操纵成可以产生第一个纯磁性量子门的构型这是新型量子计算机的关键构件。研究小组于5月2日在《科学》杂志上发表了他们的研究成果。该研究的共同作者包括第一作者、物理系研究生杜力,以及皮埃尔-巴拉尔、迈克尔-坎塔拉、朱利叶斯-德-洪德和卢宇坤他们都是麻省理工学院-哈佛超冷原子中心、物理系和电子研究实验室的成员。研究人员调整激光系统的控制电子装置。图片来源:研究人员提供为了操纵和排列原子,物理学家通常首先将原子云冷却到接近绝对零度的温度,然后使用激光束系统将原子集中到一个光学陷阱中。激光是一种具有特定波长(电场最大值之间的距离)和频率的电磁波。波长将光所能形成的最小图案限制在 500 纳米,即所谓的光学分辨率极限。由于原子会被特定频率的激光吸引,因此原子会被定位在激光强度的峰值点上。因此,现有技术对原子粒子的定位距离有限,无法用于探索更短距离内发生的现象。凯特尔解释说:"传统技术止步于 500 纳米,受限的不是原子,而是光的波长。我们现在发现了一种新的光技巧,可以突破这一限制。"该团队的新方法与当前的技术一样,首先冷却原子云在这种情况下,冷却到大约 1 微开尔文,仅比绝对零度高出一线此时,原子接近静止。然后,物理学家可以使用激光将冻结的粒子移动到所需的构型中。然后,杜和他的合作者使用了两束激光,每束激光都有不同的频率(即颜色)和圆偏振(即激光电场的方向)。当这两束激光穿过超冷原子云时,原子会沿着两束激光中任何一束的偏振,向相反的方向自旋。结果,两束激光产生了两组相同的原子,只是自旋方向相反。每束激光都形成了一个驻波,即空间周期为 500 纳米的电场强度周期性模式。由于它们的偏振不同,每个驻波都能根据原子的自旋吸引和俘获两组原子中的一组。激光可以叠加和调整,使其各自峰值之间的距离小到 50 纳米,这意味着被引力吸引到各自激光峰值的原子将被同样的 50 纳米分开。但要做到这一点,激光器必须非常稳定,不受任何外部噪音的影响,例如实验中的震动甚至呼吸声。研究小组意识到,他们可以通过一根光纤来引导这两束激光,从而使它们保持稳定。杜力说:"通过光纤发送两束激光的想法意味着整台机器可能会剧烈晃动,但两束激光彼此保持绝对稳定。"作为对新技术的首次测试,研究小组使用了镝原子一种稀土金属,它是元素周期表中磁性最强的元素之一,尤其是在超低温条件下。然而,在原子尺度上,该元素的磁相互作用在 500 纳米的距离上也相对较弱。就像普通冰箱磁铁一样,原子之间的磁吸引力会随着距离的增加而增加,科学家们怀疑,如果他们的新技术能将镝原子间隔到 50 纳米的距离,就可能观察到磁性原子之间原本微弱的相互作用。坎塔拉说:"我们可能会突然产生磁相互作用,这种作用过去几乎可以忽略不计,但现在却非常强大。"研究小组将他们的技术应用于镝,首先对原子进行过冷处理,然后通过两束激光将原子分成两个自旋组或自旋层。他们发现,两层镝原子确实向各自的激光峰引力,这实际上将原子层分开了 50 纳米这是任何超冷原子实验所能达到的最近距离。在这种极度接近的情况下,原子的自然磁性相互作用得到了显著增强,比相距 500 纳米的原子强 1000 倍。研究小组观察到,这些相互作用产生了两种新的量子现象:集体振荡,即一层的振动导致另一层同步振动;热化,即一层纯粹通过原子的磁波动将热量传递给另一层。杜指出:"到目前为止,只有当原子处于同一物理空间并发生碰撞时,它们之间才能交换热量。现在,我们看到了被真空隔开的原子层,它们通过波动的磁场交换热量。"该团队的研究成果引入了一种新技术,可用于将多种类型的原子靠近放置。他们还表明,原子放置得足够近时,会表现出有趣的量子现象,可以利用这些现象来制造新的量子材料,并有可能制造出用于量子计算机的磁驱动原子系统。坎塔拉说:"我们将超分辨率方法带入了这一领域,它将成为进行量子模拟的通用工具。可能有许多变体,我们正在研究这些变体"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

潘建伟团队成功构建求解费米子哈伯德模型的超冷原子量子模拟器

潘建伟团队成功构建求解费米子哈伯德模型的超冷原子量子模拟器 相关研究成果于7月10日在线发表在国际学术期刊《自然》杂志上。“天元”量子模拟器示意。红色和蓝色的小球分别代表自旋相反的原子,它们在三维空间交错排列,形成了反铁磁晶体。原子被光晶格囚禁在玻璃真空腔中。据介绍,费米子哈伯德模型是晶格中电子运动规律的最简化模型,被认为是有希望解释高温超导机理这一困扰物理学界近四十年难题的核心物理模型。一旦理解其物理机制,就能够规模化地设计、生产和应用新型的高温超导材料,在电力传输、医学、超算等领域产生变革性影响。潘建伟院士介绍,量子计算为求解若干经典计算机难以胜任的计算难题提供了全新的方案。此次潘建伟院士团队结合前期研究成果,实现了最低温度的均匀费米简并气体制备,满足了实现反铁磁相变所需要的低温。并进一步创造性地将盒型光势阱和平顶光晶格技术相结合,实现了空间均匀的费米子哈伯德体系的绝热制备。在此基础上,研究团队通过精确调控相互作用强度、温度和掺杂浓度,成功构建出求解费米子哈伯德模型的超冷原子量子模拟器,直接观察到反铁磁相变的确凿证据自旋结构因子在相变点附近呈现幂律的临界发散现象。从而首次验证了费米子哈伯德模型包括掺杂条件下的反铁磁相变。该工作推进了对费米子哈伯德模型的理解,不仅是理解高温超导机理的有效途径,也是量子计算研究的重大突破。 ... PC版: 手机版:

封面图片

中国量子网络领域取得新突破

中国量子网络领域取得新突破 清华大学交叉信息研究院博士生冯路(左)和助理研究员黄园园(右)正在实验室研究。受访者供图清华大学交叉信息研究院助理研究员黄园园介绍,他们利用同种离子的两对超精细能级结构,分别编码出量子网络中用于与光子产生纠缠的“通讯比特”和用于存储信息的“存储比特”。 同时,利用激光还实现了两种量子比特间微秒量级的相干转换。实验发现,通过此方法制备出的通讯比特,可在数百毫秒的时间内生成离子-光子纠缠;通过自旋回波方法可延长存储比特的存储寿命,实现相干时间达到秒量级的存储量子比特。通过比较有无离子-光子纠缠生成操作时存储比特的保真度变化, 研究人员证实了两种量子比特之间低于实验精度的串扰误差,从而实现了无串扰的量子网络节点。 ... PC版: 手机版:

封面图片

物理学家创下原子量子计算机世界纪录:实现超过1000量子位

物理学家创下原子量子计算机世界纪录:实现超过1000量子位 扩大量子系统的规模对于推进量子计算至关重要,因为系统越大,其优势就越明显。达姆施塔特工业大学的研究人员在实现这一目标方面取得了重大进展。他们的研究成果现已发表在著名期刊《光学》(Optica)上。基于二维光镊阵列的量子处理器是开发量子计算和模拟的最有前途的技术之一,可在未来实现非常有益的应用。从药物开发到优化交通流的各种应用都将受益于这项技术。迄今为止,这些处理器已经能够容纳几百个单原子量子系统,其中每个原子代表一个量子比特或量子比特,是量子信息的基本单位。为了取得进一步的进展,有必要增加处理器中量子比特的数量。达姆施塔特工业大学物理系"原子-光子-量子"研究小组的格哈德-伯克尔(Gerhard Birkl)教授领导的团队现已实现了这一目标。在 2023 年 10 月初首次发表在 arXiv 预印本服务器上、现在又经过科学同行评审发表在著名期刊《光学》(Optica)上的研究文章中,该团队报告了世界上首次成功实现在一个平面上包含 1000 多个原子量子比特的量子处理架构的实验。Birkl 谈到他们的成果时说:"我们非常高兴能够率先突破 1,000 个可单独控制的原子量子比特的大关,因为还有很多其他优秀的竞争对手紧随其后。"研究人员在实验中证明,他们将最新的量子光学方法与先进的微光学技术相结合的方法使他们能够大大提高目前对可访问量子比特数量的限制。这是通过引入"量子比特增殖"的新方法实现的。这种方法使他们克服了激光器性能有限对可用量子比特数量的限制。1305个单原子量子比特被装载到一个具有3000个陷阱位点的量子阵列中,并重新组装成具有多达441个量子比特的无缺陷目标结构。通过并行使用多个激光源,这一概念突破了迄今为止几乎无法逾越的技术界限。对于许多不同的应用来说,1000 量子比特被视为一个临界值,量子计算机所承诺的效率提升可以在这个临界值上得到首次展示。因此,世界各地的研究人员一直在为率先突破这一门槛而努力。最近发表的研究成果表明,对于原子量子比特,Birkl 教授领导的研究小组在世界范围内首次实现了这一突破。该科学出版物还介绍了激光源数量的进一步增加将如何在短短几年内使量子比特数量达到 10000 甚至更多。编译来源:ScitechDailyDOI: doi:10.1364/OPTICA.513551 ... PC版: 手机版:

封面图片

剑桥科学家在新型二维材料中实现了长期追求的量子态稳定性

剑桥科学家在新型二维材料中实现了长期追求的量子态稳定性 卡文迪什实验室的研究人员在六方氮化硼(hBN)中发现了原子缺陷在环境条件下的自旋相干性,这是量子材料领域的一项罕见成就。这项发表在《自然-材料》(Nature Materials)上的研究强调,这些自旋可以用光来控制,对未来的量子技术(包括传感和安全通信)具有广阔的前景。研究结果还强调了进一步探索提高缺陷可靠性和延长自旋存储时间的必要性,凸显了氢化硼在推进量子技术应用方面的潜力。资料来源:埃莉诺-尼科尔斯,卡文迪什实验室自旋相干性是指电子自旋能够长期保持量子信息。这一发现意义重大,因为能够在环境条件下承载量子特性的材料相当罕见。发表在《自然-材料》(Nature Materials)上的研究结果进一步证实,室温下可获得的自旋相干性比研究人员最初想象的要长。论文共同作者、卡文迪什实验室 Rubicon 博士后研究员 Carmem M. Gilardoni 说:"研究结果表明,一旦我们在这些电子的自旋上写入某种量子态,这种信息就能存储约百万分之一秒,从而使这一系统成为一个非常有前景的量子应用平台。""这看起来似乎很短,但有趣的是,这个系统并不需要特殊的条件它甚至可以在室温下存储自旋量子态,而且不需要大型磁铁"。六方氮化硼(hBN)是一种由一原子厚的层堆叠而成的超薄材料,有点像纸张。这些层通过分子间的作用力固定在一起。但有时,这些层内会出现"原子缺陷",类似于晶体内部夹杂着分子。这些缺陷可以通过明确的光学转变吸收和发射可见光范围内的光,还可以作为电子的局部陷阱。由于 hBN 中存在这些"原子缺陷",科学家们现在可以研究这些被困电子的行为方式。他们可以研究电子与磁场相互作用的自旋特性。真正令人兴奋的是,研究人员可以在室温下利用这些缺陷中的光来控制和操纵电子自旋。这一发现为未来的技术应用,尤其是传感技术的应用铺平了道路。不过,由于这是首次有人报告该系统的自旋相干性,因此在其成熟到足以用于技术应用之前,还有很多问题需要研究。科学家们仍在研究如何使这些缺陷变得更好、更可靠。他们目前正在探究我们能在多大程度上延长自旋存储时间,以及我们能否优化对量子技术应用非常重要的系统和材料参数,如缺陷的长期稳定性和该缺陷发出的光的质量。"与这一系统的合作向我们彰显了材料基础研究的力量。至于 hBN 系统,作为一个领域,我们可以在其他新材料平台中利用激发态动力学,用于未来的量子技术。"论文第一作者 Hannah Stern 博士说,她在卡文迪什实验室进行了这项研究,现在是英国皇家学会大学研究员兼曼彻斯特大学讲师。未来,研究人员将进一步开发该系统,探索从量子传感器到安全通信等多个不同方向。"每一个新的有前途的系统都将拓宽可用材料的工具包,而朝着这个方向迈出的每一步都将推动量子技术的可扩展实施。这些成果证实了层状材料有望实现这些目标,"领导该项目的卡文迪什实验室主任梅特-阿塔图雷(Mete Atatüre)教授总结道。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

超密集量子计算机破局者:1 个锑原子存储 16 个量子态

超密集量子计算机破局者:1 个锑原子存储 16 个量子态 通常情况下,1 个量子位(qubits)对应 1 个量子态(quantum state)。悉尼新南威尔士大学(UNSW)的研究人员证明,锑(Sb)原子可以同时拥有 16 种量子态。 锑原子本身有 8 个量子态,此外其电子还能额外提供 2 个量子态,而通过叠加锑原子和锑电子,就能产生总共 16 种量子态,这就像未来的 3D NAND,每个单元可以写入 16 位数据。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人