哈勃望远镜探索“超新星工厂”UGC 9684:隔几年就能生产一个太阳

哈勃望远镜探索“超新星工厂”UGC 9684:隔几年就能生产一个太阳 这幅哈勃太空望远镜拍摄的螺旋星系 UGC 9684 位于灶神座,呈现出中央条带和周围光环等特征。它因 2020 年的一颗超新星而突出,并以其频繁的超新星事件和活跃的恒星形成而闻名,成为天文学家关注的焦点。图片来源:ESA/哈勃和 NASA, C. Kilpatrick这张图片展示了几个经典的星系特征,包括星系中心的透明条和环绕星系圆盘的光环,令人印象深刻。这张哈勃图像是对II 型超新星宿主星系的研究成果。这些大灾变恒星爆炸发生在整个宇宙中,引起了天文学家的极大兴趣,因此自动巡天仪会扫描夜空,试图捕捉到它们的踪迹。让哈勃注意到 UGC 9684 的超新星发生在 2020 年。在这张拍摄于 2023 年的照片中,它已经从视野中消失了。值得注意的是,2020年在这个星系中发现的超新星并不是唯一的一颗自2006年以来,在UGC 9684星系中已经发现了四颗类似超新星的事件,使它成为最活跃的超新星生成星系。事实证明,UGC 9684 是一个相当活跃的恒星形成星系,根据计算,它每隔几年就会产生一个太阳质量的恒星。这种恒星形成水平使UGC 9684成为名副其实的超新星工厂,也是希望研究这些特殊事件的天文学家需要关注的星系。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离 哈勃太空望远镜通过观测 Ia 型超新星(如 NGC 3810 中的超新星)来帮助测量宇宙距离,利用它们一致的亮度来测量根据星系间尘埃效应调整后的距离。资料来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley天体物理学的一项重要任务是测量星系、类星体和星系团等真正遥远天体的距离。在研究早期宇宙时尤其如此,但这是一项艰巨的任务。只有太阳、行星和一些邻近恒星等少数邻近天体,我们才能直接测量它们的距离。除此之外,我们还需要使用各种间接方法;其中最重要的一种方法就是研究 Ia 型超新星,而这正是NASA/ESA 哈勃太空望远镜的作用所在。NGC 3810,也就是这张照片中的星系,是 2022 年一颗 Ia 型超新星的宿主。2023 年初,哈勃聚焦于这个星系和其他一些星系,仔细研究最近的 Ia 型超新星。这种超新星是由白矮星爆炸产生的,它们的亮度都非常一致。这使得它们可以被用来测量距离:我们知道Ia型超新星应该有多亮,所以我们可以根据它的暗淡程度来判断它的距离有多远。这种方法的一个不确定因素是,地球和超新星之间的星际尘埃会阻挡部分光线。你怎么知道光的减少有多少是由距离造成的,有多少是由尘埃造成的?在哈勃的帮助下,我们找到了一个巧妙的解决方法:用紫外光和红外光拍摄同一 Ia 型超新星的图像,紫外光几乎完全被尘埃遮挡,而红外光则几乎不受影响地穿过尘埃。通过仔细观察每个波长有多少光穿过,就可以校准超新星亮度和距离之间的关系,从而考虑到尘埃的影响。这幅图像描绘的是螺旋星系 NGC 3810。2023 年,该星系被列入哈勃计划,以提高利用 Ia 型超新星进行距离测量的精确度。之所以能做到这一点,是因为 NGC 3810 中的一颗白矮星刚刚变成超新星,哈勃在超新星从视野中消失之前捕捉到了这幅图像。超新星以发现年份命名,后跟字母递增标签a、b,以此类推。如今,通过自动巡天,每年都会发现成千上万颗超新星,因此这颗超新星被命名为SN 2022zut,即2022年发现的第18000142颗超新星!图片来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley哈勃可以用同一台仪器对这两种波长的光进行详细观测。这使它成为了这项实验的完美工具,事实上,用来制作 NGC 3810 这幅美丽图像的部分数据就集中在它的 2022 年超新星上。你可以看到它在银河核下方的一个光点,或者在上面的注释图像中看到它。测量宇宙距离的方法有很多;因为 Ia 型超新星非常明亮,所以当发现它们时,它们是最有用、最精确的工具之一。此外,还必须使用许多其他方法,要么作为对其他距离测量的独立检验,要么测量更近或更远的距离。其中一种方法也适用于星系,那就是将星系的旋转速度与亮度进行比较;根据这种方法,我们发现 NGC 3810 距地球 5000 万光年。编译自/ScitechDaily ... PC版: 手机版:

封面图片

哈勃望远镜重新审视持续40年仍然异常炙热的新星HM Sagittae

哈勃望远镜重新审视持续40年仍然异常炙热的新星HM Sagittae 这幅艺术家的概念图展示的是人马座新星系统(HM Sge),在这个系统中,一颗白矮星正在从它的红巨星伴星中吸取物质。这就在白矮星周围形成了一个炽热的圆盘,当来自红巨星的氢气密度越来越大并达到临界点时,这个圆盘就会发生不可预知的自发热核爆炸。这些伴星之间的焰火对天文学家来说非常有趣,因为它们能让他们深入了解双星系统中恒星演化的物理和动力学。资料来源:NASA、ESA、Leah Hustak(STScI)哈勃太空望远镜拍摄的共生恒星 Mira HM Sge 的图像。它位于 3400 光年外的人马座,由一颗红巨星和一颗白矮星伴星组成。这两颗恒星距离太近,哈勃无法分辨。从红巨星上渗出的物质落在白矮星上,使它变得异常明亮。这个星系在 1975 年首次爆发出新星。红色星云是恒星风的证据。星云直径约为四分之一光年。资料来源:NASA、ESA、Ravi Sankrit(STSCI)、Steven Goldman(STSCI)、Joseph DePasquale(STSCI)天文学家利用美国宇航局哈勃太空望远镜和退役的SOFIA(红外天文平流层观测站)提供的新数据以及其他任务提供的档案数据,重新审视了银河系中最奇特的双星系统之一在它作为一颗明亮而长寿的新星出现 40 年之后。新星是指亮度突然大增的恒星,通常在几个月或几年后就会逐渐消失,恢复到原来的暗淡状态。1975 年 4 月至 9 月间,双星系统 HM Sagittae(HM Sge)的亮度增加了 250 倍。更不寻常的是,它并没有像通常的新星那样迅速消退,而是几十年来一直保持着高亮度。最近的观测结果表明,该系统的温度有所升高,但矛盾的是,它的光度却在一点点减弱。HM Sge 是一种特殊的共生恒星,其中一颗白矮星和一颗臃肿的、产生尘埃的巨型伴星处于相互围绕的偏心轨道上,白矮星吸收从巨型恒星流出的气体。这些气体在白矮星周围形成一个炽热的圆盘,随着从巨星流入的氢气在白矮星表面的密度不断增加,直至达到临界点,白矮星可能会发生不可预知的自发热核爆炸。这些伴星之间的焰火让天文学家着迷,因为它们能让他们深入了解双星系统中恒星演化的物理和动力学。巴尔的摩太空望远镜科学研究所(STScI)的拉维-桑克里特(Ravi Sankrit)说:"1975年,HM Sge从一颗不起眼的恒星变成了该领域所有天文学家都在关注的恒星,而在某个时刻,这股热潮减缓了。2021 年,STScI 的 Steven Goldman、Sankrit 和合作者利用哈勃望远镜和SOFIA上的仪器,在从红外线到紫外线(UV)的光波长范围内,观察 HM Sge 在过去 30 年中发生了哪些变化。"来自哈勃的2021紫外线数据显示了一条强烈的高度电离镁发射线,这在早先公布的1990年光谱中是没有的。它的出现表明白矮星和吸积盘的估计温度从1989年的不到40万华氏度上升到了现在的超过45万华氏度。高度电离的镁线是紫外光谱中看到的众多镁线之一,综合分析这些镁线将揭示该系统的能量学,以及它在过去三十年中的变化情况。SOFIA 在试飞中打开望远镜舱门,翱翔在白雪皑皑的内华达山脉上空。SOFIA 是一架经过改装的波音 747SP 飞机。SOFIA 于 2014 年实现了全面运行能力,并于 2022 年 9 月 29 日完成了最后一次科学飞行。图片来源:NASA/Jim Ross研究小组利用将于 2022 年退役的美国宇航局飞行望远镜 SOFIA 提供的数据,探测到了该系统内部和周围流动的水、气体和尘埃。红外光谱数据显示,这颗产生大量尘埃的巨星在爆炸发生后的短短几年内就恢复了正常状态,但近年来它的光线也变得暗淡了,这是另一个有待解释的谜团。通过 SOFIA,天文学家能够看到水以每秒约 18 英里的速度流动,他们怀疑这就是白矮星周围咝咝作响的吸积盘的速度。目前,连接巨星和白矮星的气体桥必须横跨大约 20 亿英里。研究小组还一直与美国变星观测者协会(AAVSO)合作,与来自世界各地的业余天文学家合作,帮助他们用望远镜观测 HM Sge;他们的持续监测揭示了自 40 年前 HM Sge 爆发以来从未见过的变化。哈勃太空望远镜拍摄的共生恒星 Mira HM Sge 的图像,带有罗盘和刻度条。它位于射手座 3400 光年之外,由一颗红巨星和一颗白矮星伴星组成。这两颗恒星距离太近,哈勃无法分辨。从红巨星上渗出的物质落在白矮星上,使它变得异常明亮。这个星系在 1975 年首次爆发出新星。红色星云是恒星风的证据。星云直径约为四分之一光年。资料来源:NASA、ESA、Ravi Sankrit(STScI)、Steven Goldman(STScI)"像HM Sge这样的共生恒星在我们的银河系中非常罕见,而目睹类似新星的爆炸则更为罕见。这个独特的事件是天体物理学家几十年来的财富,"戈德曼说。研究小组的初步研究成果发表在《天体物理学报》上,桑克里特将在威斯康星州麦迪逊市举行的美国天文学会第244次会议上介绍以紫外光谱为重点的研究成果。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜探索银河系微弱星等的奥秘

哈勃太空望远镜探索银河系微弱星等的奥秘 哈勃太空望远镜拍摄的 UGC 11105 图像,这是一个位于 1.1 亿光年外的螺旋星系。它的视星等为 13.6 等,相对较暗,由于星等的反向对数标度,它比太阳和许多天体都要暗得多。尽管它的体积很大,但从地球上看却不那么明亮。图片来源:ESA/哈勃和 NASA,R. J. Foley(加州大学圣克鲁兹分校)2019 年在这个星系中发生的II 型超新星爆炸虽然在这张图片中已经看不到了,但当时绝对比这个星系更耀眼!更准确地说,UGC 11105 在光学系统中的视星等约为 13.6 等(这幅图像是利用涵盖光学系统核心部分的数据以及紫外线数据绘制的)。天文学家有不同的方法来量化天体的亮度,视星等就是其中之一。首先,这个量的"视"的部分指的是视星等只描述了从地球上看物体的亮度,这与测量物体的实际亮度是两码事。例如,在现实中,变星参宿四的亮度大约是太阳的 21000 倍,但由于太阳离地球更近,参宿四的亮度似乎远远低于太阳。"幅值"部分比较难描述,因为幅值刻度没有相关的单位,不像质量(我们用千克来衡量)或长度(我们用米来衡量)。幅值只有相对于其他幅值才有意义。此外,等阶不是线性的,而是一种被称为"反向对数"的数学等阶,这也意味着低等天体比高等天体更亮。举例来说,UGC 11105的光学视星等约为13.6,而太阳的视星等约为-26.8。考虑到反向对数标度,这意味着从我们在地球上的角度来看,太阳的亮度大约是UGC 11105的14000万亿倍,尽管UGC 11105是一个完整的星系.人类肉眼能看到的最暗星约为六等,大多数星系都比它暗得多。不过,哈勃已经发现了视星等高达 31 等的天体,因此 UGC 11105 并不构成太大的挑战。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度 这幅哈勃太空望远镜拍摄的图像显示,一个星系嵌入一个巨大的星系团中,其强大的引力产生了其背后遥远的一颗超新星的多幅图像。图像显示了该星系在一个名为 MACS J1149.6+2223 的大型星系团中的位置,距离超过 50 亿光年。在该星系的放大插图中,箭头指向爆炸恒星的多幅图像,该恒星被命名为雷夫斯达尔超新星,距离地球 93 亿光年。资料来源:NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STScI)、Marc Postman(STScI)、Zolt G. Levay(STScI)、FrontierSN 小组、GLASS 小组、HFF 小组(STScI)、CLASH 小组。其中一个团队特别注重训练罗曼寻找引力透镜超新星,这种天体可以用于测量宇宙膨胀率的独特方法。他们说,罗曼对这些难以捉摸的透镜超新星的研究对宇宙学的未来有着巨大的潜力。美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜是为了纪念 NASA 的第一位首席天文学家而命名的,它代表着我们在探索了解宇宙的道路上的一次飞跃。这个尖端天文台计划于 2027 年 5 月发射,旨在探索暗能量的奥秘、研究系外行星,并以前所未有的清晰度揭示宇宙的膨胀速度。罗曼太空望远镜利用先进的技术对宇宙进行大范围、细致的观测,将为我们提供对宇宙的重要见解,增强我们对宇宙组成、结构和演化的了解。资料来源:美国国家航空航天局戈达德太空飞行中心天文学家正在研究宇宙中最紧迫的谜团之一宇宙膨胀的速度他们正准备利用美国国家航空航天局的南希-格蕾丝-罗曼太空望远镜(Nancy Grace Roman Space Telescope),以一种新的方式研究这个谜团。一旦罗曼望远镜于 2027 年 5 月发射升空,天文学家们将在罗曼望远镜的大范围图像中寻找引力透镜状超新星,这些超新星可以用来测量宇宙的膨胀速度。天文学家有多种独立的方法来测量宇宙目前的膨胀率,即哈勃常数。不同的技术得出不同的值,称为哈勃张力。罗曼的大部分宇宙学研究都将针对难以捉摸的暗能量,因为暗能量会影响宇宙随时间的膨胀。这些研究的一个主要工具是一种相当传统的方法,它将 Ia 型超新星等天体的固有亮度与其感知亮度进行比较,从而确定距离。另外,天文学家也可以使用罗曼法来研究重力透镜超新星。这种探索哈勃常数的方法与传统方法不同,因为它基于几何方法,而不是亮度。这幅插图利用哈勃太空望远镜拍摄的雷夫斯达尔超新星图像,展示了大质量星系团MACS J1149.6+2223的引力是如何弯曲并聚焦来自其背后的超新星的光线,从而产生爆炸恒星的多幅图像的。这种现象被称为引力透镜。引力透镜超新星为天文学家提供了一种计算哈勃常数宇宙加速的速率的独特方法。一个研究小组正准备利用美国宇航局即将于 2027 年 5 月发射的南希-格蕾丝-罗曼太空望远镜,让天文学家发现并研究这些罕见的天体。上图显示,当恒星爆炸时,它的光线穿过太空,遇到前景星系团。如果没有星系团,天文学家将只能探测到直射地球的超新星光线,并且只能看到超新星的单一图像。然而,在超新星多重成像的情况下,光路会被星系团的引力弯曲,并重新定向到新的光路上,其中有几条光路是指向地球的。因此,天文学家可以看到爆炸恒星的多幅图像,每幅图像都对应着其中一条改变的光路。每幅图像穿过星团的路线不同,到达地球的时间也不同,部分原因是光线到达地球的路径长度不同。精确测量多幅图像之间到达时间的差异,就可以得出一个距离组合,从而限制哈勃常数。在下图中,重定向光线穿过星团中的一个巨大椭圆星系。这个星系又增加了一层透镜作用,再一次改变了原本会错过我们的几条光路的方向,并将它们聚焦,使它们能够到达地球。资料来源:NASA、ESA、Ann Feild(STSCI)、Joseph DePasquale(STSCI)、NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STSCI)、Marc Postman(STSCI)、Zolt G. Levay(STSCI)、FrontierSN 小组、GLASS 小组、HFF 小组(STSCI)、CLASH 小组。引力透镜的前景位于巴尔的摩的空间望远镜科学研究所(STScI)的卢·斯特罗格是准备对罗曼望远镜进行研究的团队的共同负责人,他说:"罗曼是让引力透镜超新星研究起飞的理想工具。这些天体非常罕见,而且很难发现。我们不得不靠运气才能及早发现其中的几个。罗曼的大视野和高分辨率重复成像将有助于提高这些机会"。天文学家利用各种天文台,如美国宇航局的哈勃太空望远镜和詹姆斯-韦伯太空望远镜,在宇宙中发现了八颗引力透镜状超新星。然而,由于超新星的类型及其延时成像的持续时间,这八个超新星中只有两个是测量哈勃常数的可行候选者。当来自恒星爆炸等天体的光线在飞往地球的途中穿过星系或星系团,并被巨大的引力场偏转时,就会发生引力透镜现象。光线沿着不同的路径分裂,在天空中形成我们看到的超新星的多个图像。根据不同路径之间的差异,超新星图像会出现几小时到几个月,甚至几年的延迟。精确测量多幅图像之间到达时间的差异,就能得出距离组合,从而限制哈勃常数。罗曼望远镜的广泛勘测将能够以比哈勃更快的速度绘制宇宙地图,它在单幅图像中"看到"的面积是哈勃的 100 多倍。特别是,高纬度时域巡天将重复观测同一天空区域,这将使天文学家能够研究随时间变化的目标。这意味着将有大量的数据每次超过 50 亿像素需要进行筛选,以发现这些非常罕见的事件。斯特罗格是该计划的共同负责人,他是 STScI 的贾斯汀-皮埃尔(Justin Pierel)。他解释说:"这台新望远镜将使我们能够在一张快照中看到整个森林,而不是收集几张树木的照片。"由斯特罗格和皮埃尔领导的 STScI 小组正在通过美国宇航局太空和地球科学研究机会(ROSES)南希-格蕾丝-罗曼太空望远镜研究和支持参与机会计划资助的一个项目,为在罗曼数据中发现引力透镜超新星奠定基础。皮埃尔说:"由于这些超新星非常罕见,要充分利用引力透镜超新星的潜力,就必须做好充分准备。我们希望提前准备好寻找这些超新星的所有工具,这样当数据到来时,我们就不用浪费任何时间来筛选数以兆字节计的数据了"。该项目将由美国国家航空航天局(NASA)各中心和全国各大学的研究人员组成的团队实施。准备工作将分几个阶段进行。研究小组将创建数据还原管道,用于在罗曼成像中自动检测引力透镜超新星。为了训练这些管道,研究人员还将创建模拟成像:需要 50000 个模拟透镜,而目前已知的实际透镜只有 10000 个。斯特罗格和皮埃尔团队创建的数据缩减管道将补充正在创建的管道,以便利用 Ia 型超新星研究暗能量。"罗曼望远镜确实是创建黄金标准引力透镜超新星样本的第一次机会,"斯特罗格总结道。"我们现在的所有准备工作都将产生所需的所有成分,以确保我们能够有效地利用宇宙学的巨大潜力"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA费米望远镜发现附近超新星并没有发出伽马射线

NASA费米望远镜发现附近超新星并没有发出伽马射线 2023 年对风车星系中的超新星 SN 2023ixf 的观测为研究宇宙射线的产生提供了一个独特的机会,但是 NASA 的费米望远镜并没有探测到预期的伽马射线,这表明能量转换率比预期的要低得多。资料来源:美国国家航空航天局2023年5月18日,一颗超新星在附近的风车星系(Messier 101)爆发,它位于大约2200万光年外的大熊座。这颗超新星被命名为SN 2023ixf,是自2008年费米探测器发射以来发现的附近最亮的超新星。意大利里雅斯特大学研究员吉列姆-马蒂-德韦萨说:"天体物理学家以前估计,超新星将其总能量的大约 10%转化为宇宙射线加速度。但我们从未直接观测到这一过程。通过对SN 2023ixf的新观测,我们的计算结果是爆炸后几天内的能量转换率低至1%。这并不排除超新星是宇宙射线工厂的可能性,但这确实意味着我们还有更多关于超新星产生的知识要学习。"这篇论文由马丁-德维萨在奥地利因斯布鲁克大学(University of Innsbruck)期间发表,将刊登在未来出版的《天文学与天体物理学》(Astronomy and Astrophysics)杂志上。即使没有探测到伽马射线,美国宇航局的费米伽马射线太空望远镜也能帮助天文学家了解更多有关宇宙的信息。资料来源:美国宇航局戈达德太空飞行中心宇宙射线及其起源每天,数以万亿计的宇宙射线与地球大气层发生碰撞。其中大约 90% 是氢原子核(或质子),其余的是电子或较重元素的原子核。自 20 世纪初以来,科学家们一直在研究宇宙射线的起源,但这些粒子无法追溯到它们的源头。由于宇宙射线带电,它们在飞往地球的途中会因遇到磁场而改变方向。位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的费米项目科学家伊丽莎白-海斯说:"然而,伽马射线会直接射向我们。宇宙射线在与周围环境中的物质相互作用时会产生伽马射线。费米望远镜是轨道上最灵敏的伽马射线望远镜,因此当它没有探测到预期的信号时,科学家必须对这种缺失做出解释。解开这个谜团,就能更准确地了解宇宙射线的起源。"弗雷德-劳伦斯-惠普尔天文台(Fred Lawrence Whipple Observatory)的48英寸望远镜在2023年6月捕捉到了这张风车星系(Messier 101)的可见光图像。超新星2023ixf的位置被圈了起来。天文台位于亚利桑那州的霍普金斯山上,由哈佛天体物理学中心和史密森尼天文台共同运营。资料来源:平松等人,2023/Sebastian Gomez (STScI)作为宇宙射线加速器的超新星长期以来,天体物理学家一直怀疑超新星是宇宙射线的主要贡献者。当一颗质量至少是太阳 8 倍的恒星耗尽燃料时,就会发生这种爆炸。内核坍缩,然后反弹,推动冲击波向外穿过恒星。冲击波加速粒子,产生宇宙射线。当宇宙射线与恒星周围的其他物质和光线碰撞时,就会产生伽马射线。超新星会极大地影响星系的星际环境。它们的爆炸波和不断膨胀的碎片云可能会持续存在 5 万年以上。2013年,费米测量显示,银河系中的超新星残骸正在加速宇宙射线,当它们撞击星际物质时,会产生伽马射线光。但天文学家说,这些残余物并没有产生足够的高能粒子,无法与科学家在地球上的测量结果相匹配。一种理论认为,超新星可能会在最初爆炸后的几天或几周内加速银河系中能量最高的宇宙射线。但是超新星非常罕见,在银河系这样的星系中,一个世纪才会发生几次。在大约3200万光年的距离内,超新星平均每年只发生一次。从可见光望远镜第一次看到 SN 2023ixf 开始,经过一个月的观测,费米没有探测到伽马射线。挑战与未来研究合著者、法国国家科学研究中心下属蒙彼利埃宇宙与粒子实验室的天体物理学家马蒂厄-雷诺(Matthieu Renaud)说:"不幸的是,看不到伽马射线并不意味着没有宇宙射线。我们必须对所有有关加速机制和环境条件的基本假设进行研究,才能将伽马射线的缺失转化为宇宙射线产生的上限。"研究人员提出了几种可能影响费米观测到该事件产生的伽马射线的情况,比如爆炸碎片的分布方式和恒星周围物质的密度。费米的观测首次为研究超新星爆炸后的状况提供了机会。以其他波长对SN 2023ixf进行的更多观测、基于这一事件的新模拟和模型,以及未来对其他年轻超新星的研究,都将帮助天文学家找到宇宙宇宙射线的神秘来源。费米是戈达德管理的一个天体物理学和粒子物理学合作项目。费米项目是与美国能源部合作开发的,法国、德国、意大利、日本、瑞典和美国的学术机构和合作伙伴也做出了重要贡献。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜带你认识疏散星团

哈勃太空望远镜带你认识疏散星团 这张哈勃太空望远镜拍摄的照片显示的是一个名为 NGC 2164 的疏散星团,它是由一位名叫詹姆斯-邓洛普的苏格兰天文学家于 1826 年首次发现的。NGC 2164 位于银河系的近邻之一被称为大麦哲伦云的卫星星系内。大麦哲伦星云是一个相对较小的星系,距离地球约16万光年。它被认为是一个卫星星系,因为它与银河系有引力约束。图片来源:ESA/哈勃和 NASA, J. Kalirai, A. Milone由于其开放和弥散的结构,它们并不是特别稳定,其组成恒星可能会在几百万年后消散。因此,在新恒星正在形成的螺旋星系和不规则星系中会发现疏散星团,而在椭圆星系中则不会发现疏散星团。在银河系中,我们可以在旋臂内和旋臂之间发现疏散星团。天文学家对所有星团都非常感兴趣,因为其中的恒星都是在大致相同的时间和地点形成的。疏散星团通常比球状星团更容易观测,因为可以对单个恒星进行研究。对星团的研究为了解恒星的形成和演化过程提供了独特的视角。疏散星团是由几十颗到几百颗恒星组成的松散星团。它们存在于螺旋星系和不规则星系中。图片来源:NASA和 ESA迄今为止,天文学界在银河系中已经发现了大约 1100 个疏散星团,不过人们认为还有更多疏散星团存在。Trumpler 14就是其中之一,它位于大约 8000 光年之外,靠近著名的船底座星云的中心,被哈勃拍摄得非常美丽。在整个银河系中,这个空间区域是大质量、高亮度恒星最密集的地方之一。NGC 1872 位于我们的小邻近星系大麦哲伦云中。这个星团具有两种星团类型的特征它和典型的球状星团一样丰富,但要年轻得多,而且和许多疏散星团一样,它的恒星更蓝。这样的中间星团在大麦哲伦云中很常见。资料来源:美国国家航空航天局和欧空局哈勃还瞄准了著名的鹰状星云(NGC 6611)的壮观部分,这是一个开放星团,形成于大约 550 万年前,距离地球大约 6500 光年。这是一个非常年轻的星团,包含许多炙热的蓝色恒星,其强烈的紫外线光芒使周围的鹰状星云发出耀眼的光芒。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人