罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度 这幅哈勃太空望远镜拍摄的图像显示,一个星系嵌入一个巨大的星系团中,其强大的引力产生了其背后遥远的一颗超新星的多幅图像。图像显示了该星系在一个名为 MACS J1149.6+2223 的大型星系团中的位置,距离超过 50 亿光年。在该星系的放大插图中,箭头指向爆炸恒星的多幅图像,该恒星被命名为雷夫斯达尔超新星,距离地球 93 亿光年。资料来源:NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STScI)、Marc Postman(STScI)、Zolt G. Levay(STScI)、FrontierSN 小组、GLASS 小组、HFF 小组(STScI)、CLASH 小组。其中一个团队特别注重训练罗曼寻找引力透镜超新星,这种天体可以用于测量宇宙膨胀率的独特方法。他们说,罗曼对这些难以捉摸的透镜超新星的研究对宇宙学的未来有着巨大的潜力。美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜是为了纪念 NASA 的第一位首席天文学家而命名的,它代表着我们在探索了解宇宙的道路上的一次飞跃。这个尖端天文台计划于 2027 年 5 月发射,旨在探索暗能量的奥秘、研究系外行星,并以前所未有的清晰度揭示宇宙的膨胀速度。罗曼太空望远镜利用先进的技术对宇宙进行大范围、细致的观测,将为我们提供对宇宙的重要见解,增强我们对宇宙组成、结构和演化的了解。资料来源:美国国家航空航天局戈达德太空飞行中心天文学家正在研究宇宙中最紧迫的谜团之一宇宙膨胀的速度他们正准备利用美国国家航空航天局的南希-格蕾丝-罗曼太空望远镜(Nancy Grace Roman Space Telescope),以一种新的方式研究这个谜团。一旦罗曼望远镜于 2027 年 5 月发射升空,天文学家们将在罗曼望远镜的大范围图像中寻找引力透镜状超新星,这些超新星可以用来测量宇宙的膨胀速度。天文学家有多种独立的方法来测量宇宙目前的膨胀率,即哈勃常数。不同的技术得出不同的值,称为哈勃张力。罗曼的大部分宇宙学研究都将针对难以捉摸的暗能量,因为暗能量会影响宇宙随时间的膨胀。这些研究的一个主要工具是一种相当传统的方法,它将 Ia 型超新星等天体的固有亮度与其感知亮度进行比较,从而确定距离。另外,天文学家也可以使用罗曼法来研究重力透镜超新星。这种探索哈勃常数的方法与传统方法不同,因为它基于几何方法,而不是亮度。这幅插图利用哈勃太空望远镜拍摄的雷夫斯达尔超新星图像,展示了大质量星系团MACS J1149.6+2223的引力是如何弯曲并聚焦来自其背后的超新星的光线,从而产生爆炸恒星的多幅图像的。这种现象被称为引力透镜。引力透镜超新星为天文学家提供了一种计算哈勃常数宇宙加速的速率的独特方法。一个研究小组正准备利用美国宇航局即将于 2027 年 5 月发射的南希-格蕾丝-罗曼太空望远镜,让天文学家发现并研究这些罕见的天体。上图显示,当恒星爆炸时,它的光线穿过太空,遇到前景星系团。如果没有星系团,天文学家将只能探测到直射地球的超新星光线,并且只能看到超新星的单一图像。然而,在超新星多重成像的情况下,光路会被星系团的引力弯曲,并重新定向到新的光路上,其中有几条光路是指向地球的。因此,天文学家可以看到爆炸恒星的多幅图像,每幅图像都对应着其中一条改变的光路。每幅图像穿过星团的路线不同,到达地球的时间也不同,部分原因是光线到达地球的路径长度不同。精确测量多幅图像之间到达时间的差异,就可以得出一个距离组合,从而限制哈勃常数。在下图中,重定向光线穿过星团中的一个巨大椭圆星系。这个星系又增加了一层透镜作用,再一次改变了原本会错过我们的几条光路的方向,并将它们聚焦,使它们能够到达地球。资料来源:NASA、ESA、Ann Feild(STSCI)、Joseph DePasquale(STSCI)、NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STSCI)、Marc Postman(STSCI)、Zolt G. Levay(STSCI)、FrontierSN 小组、GLASS 小组、HFF 小组(STSCI)、CLASH 小组。引力透镜的前景位于巴尔的摩的空间望远镜科学研究所(STScI)的卢·斯特罗格是准备对罗曼望远镜进行研究的团队的共同负责人,他说:"罗曼是让引力透镜超新星研究起飞的理想工具。这些天体非常罕见,而且很难发现。我们不得不靠运气才能及早发现其中的几个。罗曼的大视野和高分辨率重复成像将有助于提高这些机会"。天文学家利用各种天文台,如美国宇航局的哈勃太空望远镜和詹姆斯-韦伯太空望远镜,在宇宙中发现了八颗引力透镜状超新星。然而,由于超新星的类型及其延时成像的持续时间,这八个超新星中只有两个是测量哈勃常数的可行候选者。当来自恒星爆炸等天体的光线在飞往地球的途中穿过星系或星系团,并被巨大的引力场偏转时,就会发生引力透镜现象。光线沿着不同的路径分裂,在天空中形成我们看到的超新星的多个图像。根据不同路径之间的差异,超新星图像会出现几小时到几个月,甚至几年的延迟。精确测量多幅图像之间到达时间的差异,就能得出距离组合,从而限制哈勃常数。罗曼望远镜的广泛勘测将能够以比哈勃更快的速度绘制宇宙地图,它在单幅图像中"看到"的面积是哈勃的 100 多倍。特别是,高纬度时域巡天将重复观测同一天空区域,这将使天文学家能够研究随时间变化的目标。这意味着将有大量的数据每次超过 50 亿像素需要进行筛选,以发现这些非常罕见的事件。斯特罗格是该计划的共同负责人,他是 STScI 的贾斯汀-皮埃尔(Justin Pierel)。他解释说:"这台新望远镜将使我们能够在一张快照中看到整个森林,而不是收集几张树木的照片。"由斯特罗格和皮埃尔领导的 STScI 小组正在通过美国宇航局太空和地球科学研究机会(ROSES)南希-格蕾丝-罗曼太空望远镜研究和支持参与机会计划资助的一个项目,为在罗曼数据中发现引力透镜超新星奠定基础。皮埃尔说:"由于这些超新星非常罕见,要充分利用引力透镜超新星的潜力,就必须做好充分准备。我们希望提前准备好寻找这些超新星的所有工具,这样当数据到来时,我们就不用浪费任何时间来筛选数以兆字节计的数据了"。该项目将由美国国家航空航天局(NASA)各中心和全国各大学的研究人员组成的团队实施。准备工作将分几个阶段进行。研究小组将创建数据还原管道,用于在罗曼成像中自动检测引力透镜超新星。为了训练这些管道,研究人员还将创建模拟成像:需要 50000 个模拟透镜,而目前已知的实际透镜只有 10000 个。斯特罗格和皮埃尔团队创建的数据缩减管道将补充正在创建的管道,以便利用 Ia 型超新星研究暗能量。"罗曼望远镜确实是创建黄金标准引力透镜超新星样本的第一次机会,"斯特罗格总结道。"我们现在的所有准备工作都将产生所需的所有成分,以确保我们能够有效地利用宇宙学的巨大潜力"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍 韦伯望远镜非常适合用来识别极其遥远的超新星,因为存在一种叫做宇宙学红移的现象,在这种现象中,穿越宇宙的光线会被拉伸到更长的波长。来自远古超新星的可见光被拉伸得如此之长,以至于最终出现在红外线中。韦伯望远镜的仪器可以看到红外光,因此非常适合寻找这些遥远的超新星。一个研究小组利用韦伯早期宇宙深度探测的数据,发现了比以前已知的多 10 倍的远古超新星。这项研究是利用韦伯望远镜对远古超新星进行更广泛探测的第一步。JADES 深度场使用的是 NASA 詹姆斯-韦伯太空望远镜(JWST)的观测数据,这是 JADES(JWST 高级河外星系深度巡天)计划的一部分。一个研究 JADES 数据的天文学家小组发现了大约 80 个亮度随时间变化的天体(绿色圈内)。这些被称为瞬变天体的天体大多是恒星或超新星爆炸的结果。资料来源:NASA、ESA、CSA、STScI、JADES 合作组织美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)深入窥探宇宙,为科学家们首次提供了宇宙早期超新星的详细资料。一个使用韦伯数据的研究小组发现,早期宇宙中的超新星比之前已知的多 10 倍。其中一些新发现的爆炸恒星是同类恒星中最遥远的例子,包括那些用来测量宇宙膨胀率的恒星。"韦伯望远镜是一台发现超新星的机器,"图森市亚利桑那大学斯图尔特天文台的三年级研究生克里斯塔-德库西(Christa DeCoursey)说。"探测到的超新星数量之多,加上这些超新星的距离之远,是我们巡天观测中最令人兴奋的两项成果"。德库西在威斯康星州麦迪逊举行的美国天文学会第244次会议的新闻发布会上介绍了这些发现。资料来源:NASA、ESA、CSA、Ann Feild(STScI)为了取得这些发现,研究小组分析了作为 JWST 高级深河外星系巡天(JADES)计划一部分而获得的成像数据。韦伯望远镜非常适合寻找极其遥远的超新星,因为它们的光线会被拉伸到更长的波长这种现象被称为宇宙学红移。(见上图)。在韦伯望远镜发射之前,只有少数超新星的红移超过2,这相当于宇宙的年龄只有33亿年仅为目前年龄的25%。JADES样本包含了许多在更久远的过去爆炸的超新星,当时宇宙的年龄还不到20亿年。以前,研究人员利用美国宇航局的哈勃太空望远镜观测宇宙处于"青年期"时的超新星。通过 JADES,科学家们看到了宇宙处于"十几岁"或"前十几岁"时的超新星。未来,他们希望能够回望宇宙的"幼儿"或"婴儿"阶段。为了发现这些超新星,研究小组比较了相隔一年的多幅图像,寻找在这些图像中消失或出现的光源。这些观测亮度随时间变化的天体被称为瞬变体,而超新星就是瞬变体的一种。总之,JADES 瞬变巡天样本小组在一片只有米粒粗细的天空中发现了大约 80 个超新星。这张马赛克照片展示了从 JADES(JWST 高级深河外星系巡天)计划的数据中发现的约 80 个瞬变天体(即亮度不断变化的天体)中的三个。大多数瞬变体都是恒星或超新星爆炸的结果。通过对比 2022 年和 2023 年拍摄的图像,天文学家可以找到从我们的视角来看最近才爆炸的超新星(如前两列所示的例子),或者已经爆炸但其光线正在逐渐消失的超新星(第三列)。每颗超新星的年龄都可以通过它的红移(用"z"表示)来确定。最遥远的超新星的红移为 3.8,它的光起源于宇宙只有 17 亿年的时候。红移 2.845 相当于宇宙大爆炸后 23 亿年。最接近的例子红移为 0.655,显示的是大约 60 亿年前离开其星系的光线,当时宇宙的年龄刚刚超过现在的一半。资料来源:NASA、ESA、CSA、STScI、Christa DeCoursey(亚利桑那大学)、JADES 合作组织位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)的美国宇航局爱因斯坦研究员贾斯汀-皮埃尔(Justin Pierel)说:"这确实是我们对高红移宇宙的瞬态科学的第一个样本。我们正试图确定遥远的超新星是否与我们在附近宇宙中看到的超新星有本质区别或非常相似。"皮埃尔和 STScI 的其他研究人员提供了专家分析,以确定哪些瞬变实际上是超新星,哪些不是,因为它们往往看起来非常相似。研究小组发现了一些高红移超新星,包括光谱学上确认的最远的一颗,红移为 3.6。它的祖星在宇宙只有 18 亿岁时爆炸。这是一颗所谓的核心坍缩超新星,是一颗大质量恒星的爆炸。这段动画展示了白矮星爆炸的过程,白矮星是一颗恒星的残余物,密度极高,其核心已无法再燃烧核燃料。在这颗"Ia 型"超新星中,白矮星的引力从附近的恒星伴星那里偷走了物质。当白矮星的质量估计达到目前太阳质量的 1.4 倍时,它再也无法承受自身的重量,于是爆炸了。资料来源:NASA/JPL-Caltech天体物理学家特别感兴趣的是 Ia 型超新星。(这些爆炸的恒星非常明亮,可以用来测量遥远的宇宙距离,帮助科学家计算宇宙的膨胀率。研究小组至少发现了一颗红移为 2.9 的 Ia 型超新星。这颗爆炸产生的光在 115 亿年前开始向我们传播,当时宇宙的年龄只有 23 亿年。此前经光谱学确认的 Ia 型超新星的距离记录是红移 1.95,当时宇宙的年龄是 34 亿年。科学家们迫切希望分析高红移下的Ia型超新星,看看它们是否都具有相同的内在亮度,而与距离无关。这一点至关重要,因为如果它们的亮度随红移而变化,那么它们就不能成为测量宇宙膨胀率的可靠标记。Pierel 分析了这颗发现于红移 2.9 的 Ia 型超新星,以确定其内在亮度是否与预期不同。虽然这只是第一个这样的天体,但结果表明没有证据表明Ia型亮度会随红移而变化。我们还需要更多的数据,但现在,基于 Ia 型超新星的宇宙膨胀率理论及其最终命运仍然保持不变。皮埃尔还在美国天文学会第244次会议上介绍了他的研究成果。早期宇宙的环境与现在截然不同。科学家们期望看到来自恒星的古老超新星,这些恒星所含的重化学元素远远少于太阳这样的恒星。将这些超新星与本地宇宙中的超新星进行比较,将有助于天体物理学家了解早期恒星的形成和超新星的爆发机制。STScI研究员马修-西伯特(Matthew Siebert)说:"我们基本上为瞬变宇宙打开了一扇新窗口。从历史上看,每当我们这样做的时候,我们都会发现一些极其令人兴奋的东西一些我们意想不到的东西。"JADES团队成员、亚利桑那大学图森分校研究教授Eiichi Egami说:"由于韦伯望远镜非常灵敏,它几乎能在其指向的所有地方发现超新星和其他瞬变体。这是利用韦伯望远镜对超新星进行更广泛观测的重要第一步。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离 哈勃太空望远镜通过观测 Ia 型超新星(如 NGC 3810 中的超新星)来帮助测量宇宙距离,利用它们一致的亮度来测量根据星系间尘埃效应调整后的距离。资料来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley天体物理学的一项重要任务是测量星系、类星体和星系团等真正遥远天体的距离。在研究早期宇宙时尤其如此,但这是一项艰巨的任务。只有太阳、行星和一些邻近恒星等少数邻近天体,我们才能直接测量它们的距离。除此之外,我们还需要使用各种间接方法;其中最重要的一种方法就是研究 Ia 型超新星,而这正是NASA/ESA 哈勃太空望远镜的作用所在。NGC 3810,也就是这张照片中的星系,是 2022 年一颗 Ia 型超新星的宿主。2023 年初,哈勃聚焦于这个星系和其他一些星系,仔细研究最近的 Ia 型超新星。这种超新星是由白矮星爆炸产生的,它们的亮度都非常一致。这使得它们可以被用来测量距离:我们知道Ia型超新星应该有多亮,所以我们可以根据它的暗淡程度来判断它的距离有多远。这种方法的一个不确定因素是,地球和超新星之间的星际尘埃会阻挡部分光线。你怎么知道光的减少有多少是由距离造成的,有多少是由尘埃造成的?在哈勃的帮助下,我们找到了一个巧妙的解决方法:用紫外光和红外光拍摄同一 Ia 型超新星的图像,紫外光几乎完全被尘埃遮挡,而红外光则几乎不受影响地穿过尘埃。通过仔细观察每个波长有多少光穿过,就可以校准超新星亮度和距离之间的关系,从而考虑到尘埃的影响。这幅图像描绘的是螺旋星系 NGC 3810。2023 年,该星系被列入哈勃计划,以提高利用 Ia 型超新星进行距离测量的精确度。之所以能做到这一点,是因为 NGC 3810 中的一颗白矮星刚刚变成超新星,哈勃在超新星从视野中消失之前捕捉到了这幅图像。超新星以发现年份命名,后跟字母递增标签a、b,以此类推。如今,通过自动巡天,每年都会发现成千上万颗超新星,因此这颗超新星被命名为SN 2022zut,即2022年发现的第18000142颗超新星!图片来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley哈勃可以用同一台仪器对这两种波长的光进行详细观测。这使它成为了这项实验的完美工具,事实上,用来制作 NGC 3810 这幅美丽图像的部分数据就集中在它的 2022 年超新星上。你可以看到它在银河核下方的一个光点,或者在上面的注释图像中看到它。测量宇宙距离的方法有很多;因为 Ia 型超新星非常明亮,所以当发现它们时,它们是最有用、最精确的工具之一。此外,还必须使用许多其他方法,要么作为对其他距离测量的独立检验,要么测量更近或更远的距离。其中一种方法也适用于星系,那就是将星系的旋转速度与亮度进行比较;根据这种方法,我们发现 NGC 3810 距地球 5000 万光年。编译自/ScitechDaily ... PC版: 手机版:

封面图片

哈勃望远镜探索“超新星工厂”UGC 9684:隔几年就能生产一个太阳

哈勃望远镜探索“超新星工厂”UGC 9684:隔几年就能生产一个太阳 这幅哈勃太空望远镜拍摄的螺旋星系 UGC 9684 位于灶神座,呈现出中央条带和周围光环等特征。它因 2020 年的一颗超新星而突出,并以其频繁的超新星事件和活跃的恒星形成而闻名,成为天文学家关注的焦点。图片来源:ESA/哈勃和 NASA, C. Kilpatrick这张图片展示了几个经典的星系特征,包括星系中心的透明条和环绕星系圆盘的光环,令人印象深刻。这张哈勃图像是对II 型超新星宿主星系的研究成果。这些大灾变恒星爆炸发生在整个宇宙中,引起了天文学家的极大兴趣,因此自动巡天仪会扫描夜空,试图捕捉到它们的踪迹。让哈勃注意到 UGC 9684 的超新星发生在 2020 年。在这张拍摄于 2023 年的照片中,它已经从视野中消失了。值得注意的是,2020年在这个星系中发现的超新星并不是唯一的一颗自2006年以来,在UGC 9684星系中已经发现了四颗类似超新星的事件,使它成为最活跃的超新星生成星系。事实证明,UGC 9684 是一个相当活跃的恒星形成星系,根据计算,它每隔几年就会产生一个太阳质量的恒星。这种恒星形成水平使UGC 9684成为名副其实的超新星工厂,也是希望研究这些特殊事件的天文学家需要关注的星系。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜 NGC 5468 是一个距离地球约 1.3 亿光年的星系,这张照片结合了哈勃和詹姆斯-韦伯太空望远镜的数据。这是哈勃发现的最远的仙王座变星星系。它们是测量宇宙膨胀率的重要里程标。根据仙王座变星计算出的距离与该星系中的一颗Ia型超新星相互关联。Ia 型超新星的亮度非常高,它们被用来测量远超过蛇夫座星系范围的宇宙距离,从而将宇宙膨胀率的测量扩展到更深的空间。资料来源:NASA, ESA, CSA, STScI, Adam G. Riess (JHU, STScI)宇宙膨胀的速度,即哈勃常数,是了解宇宙演化和最终命运的基本参数之一。然而,用各种独立的距离指标测得的哈勃常数值与根据宇宙大爆炸余辉预测的值之间存在着持续的差异,这种差异被称为"哈勃张力"(Hubble Tension)。NASA/ESA/CSA 詹姆斯-韦伯太空望远镜证实,哈勃太空望远镜敏锐的目光一直都是正确的,消除了人们对哈勃测量结果的疑虑。哈勃的历史成就建造NASA/ESA 哈勃太空望远镜的科学依据之一是利用其观测能力为宇宙膨胀率提供一个精确的数值。在哈勃望远镜于 1990 年发射之前,地面望远镜的观测结果存在巨大的不确定性。根据推导出的宇宙膨胀率数值,宇宙的年龄可能在 100 亿年到 200 亿年之间。在过去的 34 年中,哈勃已经将这一测量值的精确度缩减到了百分之一以下,将两者的年龄差值缩小到了 138 亿年。哈勃通过测量被称为"仙王座变星"的重要里程碑,完善了所谓的"宇宙距离阶梯",从而实现了这一目标。然而,哈勃值与其他测量结果并不一致,其他测量结果表明宇宙在大爆炸后膨胀得更快。这些观测数据是由欧空局普朗克卫星对宇宙微波背景辐射绘制的地图得出的,宇宙微波背景辐射是宇宙从大爆炸冷却下来后结构演变的蓝图。解决这个难题的简单办法是说,也许哈勃的观测结果是错误的,因为它对深空尺度的测量出现了误差。詹姆斯-韦伯太空望远镜的出现,让天文学家能够核对哈勃的观测结果。韦伯对仙王座的红外观测结果与哈勃的光学数据一致。韦伯证实了哈勃望远镜敏锐的目光一直都是正确的,消除了对哈勃测量结果的任何疑虑。这些并排图像的中心是一种特殊的恒星,它是测量宇宙膨胀速度的里程标仙王座变星。这两幅图像的像素非常高,因为它们是一个遥远星系的放大图。每个像素代表一颗或多颗恒星。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄的图像在近红外波段要比哈勃望远镜(主要是可见光-紫外光望远镜)清晰得多。通过韦伯更清晰的视野来减少杂波,仙王座就能更清晰地显现出来,消除任何潜在的混淆。韦伯望远镜被用来观测一个仙王座样本,并证实了之前哈勃观测的准确性,而哈勃观测是精确测量宇宙膨胀速度和年龄的基础。图片来源:NASA、ESA、CSA、STScI、Adam G. Riess(JHU、STScI)宇宙奥秘与理论挑战最重要的一点是,与早期宇宙的膨胀相比,近邻宇宙中发生的事情之间所谓的哈勃张力(Hubble Tension)仍然是宇宙学家耿耿于怀的难题。空间结构中可能存在一些我们还不了解的东西。解决这一差异需要新的物理学吗?还是由于确定空间膨胀率的两种不同方法之间存在测量误差?哈勃和韦伯现在已经联手进行了明确的测量,进一步证明了是其他东西而不是测量误差在影响膨胀率。宇宙观测的进展巴尔的摩约翰-霍普金斯大学的物理学家亚当-里厄斯说:"在消除了测量误差之后,剩下的就是我们误解了宇宙这一真实而令人兴奋的可能性。亚当因与他人共同发现了宇宙膨胀正在加速这一事实而获得诺贝尔奖,这一现象现在被称为'暗能量'。"作为交叉检验,2023 年的首次韦伯观测证实,哈勃对膨胀宇宙的测量是准确的。然而,为了缓解"哈勃张力",一些科学家推测,随着我们对宇宙的深入观察,测量中看不见的误差可能会增加并变得明显。特别是,恒星拥挤可能会系统地影响对更遥远恒星亮度的测量。合作验证与未来方向亚当领导的 SH0ES(用于暗能量状态方程的超新星 H0)小组利用韦伯望远镜获得了更多的观测数据,这些天体是关键的宇宙里程碑标记,被称为仙王座变星,现在可以与哈勃数据进行关联。亚当说:"我们现在已经跨越了哈勃观测到的整个范围,我们可以非常有把握地排除测量误差是哈勃张力的原因。"团队在 2023 年进行的前几次韦伯观测成功表明,哈勃在牢固确立所谓宇宙距离阶梯第一级的保真度方面走在了正确的道路上。这幅插图展示了天文学家用来计算宇宙随时间膨胀速度的三个基本步骤,这个值被称为哈勃常数。所有这些步骤都涉及建立一个强大的"宇宙距离阶梯",首先测量附近星系的精确距离,然后再测量越来越远的星系。这个"阶梯"是一系列对不同种类天体的测量结果,研究人员可以利用这些天体的固有亮度来计算距离。对于较短的距离来说,最可靠的是仙王座变星,这些恒星以可预测的速率脉动,从而显示出它们的内在亮度。最近,天文学家利用哈勃太空望远镜观测了附近大麦哲伦云中的 70 个仙王座变星,对该星系进行了最精确的距离测量。天文学家将附近的仙王座变星的测量结果与更远星系的测量结果进行比较,这些星系还包括另一个宇宙尺度被称为Ia型超新星的爆炸恒星。这些超新星比仙王座变星亮得多。天文学家用它们作为"里程标",来测量从地球到遥远星系的距离。每一个标记都建立在"阶梯"的前一步之上。通过使用不同种类的可靠"里程标"来扩展"阶梯",天文学家可以测出宇宙中非常遥远的距离。天文学家将这些距离值与整个星系的光线测量值进行比较,由于空间的均匀膨胀,星系的光线会随着距离的增加而逐渐变红。这样,天文学家就可以计算出宇宙膨胀的速度:哈勃常数。图片来源:NASA、ESA 和 A:NASA, ESA and A. Feild (STScI)宇宙距离阶梯的复杂性天文学家使用各种方法来测量宇宙中的相对距离,具体取决于所观测的天体。这些技术统称为宇宙距离阶梯每一级阶梯或测量技术都依赖于前一级阶梯的校准。但一些天文学家认为,沿着"第二梯级"向外移动,如果仙王座的测量结果随着距离的增加而变得不那么精确,那么宇宙距离的阶梯可能会变得不稳固。出现这种不准确的情况可能是因为仙王座的光线可能会与邻近恒星的光线混合在一起随着距离的增加,这种效应可能会变得更加明显,因为天空中的恒星会挤在一起,彼此变得更加难以区分。观测方面的挑战在于,过去哈勃拍摄的这些更遥远的仙王座变星的图像,在我们和它们的宿主星系之间的距离越来越远时,看起来与邻近的恒星更加拥挤和重叠,因此需要仔细考虑这种效应。中间的尘埃使可见光测量的确定性变得更加复杂。韦伯望远镜能穿过尘埃,自然地将倒灶系恒星与邻近恒星隔离开来,因为它在红外波段的视力比哈勃望远镜更敏锐。"韦伯望远镜和哈勃望远镜的结合为我们提供了两全其美的解决方案。我们发现,当我们沿着宇宙距离阶梯爬得更远时,哈勃的测量结果仍然是可靠的,"亚当说。新的韦伯观测结果包括八个 Ia 型超新星的五个宿主星系,共包含 1000 个蛇夫座天体,并延伸到蛇夫座天体测量结果最远的星系距离 1.3 亿光年的 NGC 5468。"这横跨了我们用哈勃测量的全部范围。因此,我们已经走到了宇宙距离阶梯第二级的尽头,"合著者、巴尔的摩太空望远镜科学研究所的加甘迪普-阿南德(Gagandeep Anand)说,该研究所为美国国家航空航天局(NASA)运营韦伯望远镜和哈勃望远镜。哈勃和韦伯对"哈勃张力"的确认,... PC版: 手机版:

封面图片

NASA费米望远镜发现附近超新星并没有发出伽马射线

NASA费米望远镜发现附近超新星并没有发出伽马射线 2023 年对风车星系中的超新星 SN 2023ixf 的观测为研究宇宙射线的产生提供了一个独特的机会,但是 NASA 的费米望远镜并没有探测到预期的伽马射线,这表明能量转换率比预期的要低得多。资料来源:美国国家航空航天局2023年5月18日,一颗超新星在附近的风车星系(Messier 101)爆发,它位于大约2200万光年外的大熊座。这颗超新星被命名为SN 2023ixf,是自2008年费米探测器发射以来发现的附近最亮的超新星。意大利里雅斯特大学研究员吉列姆-马蒂-德韦萨说:"天体物理学家以前估计,超新星将其总能量的大约 10%转化为宇宙射线加速度。但我们从未直接观测到这一过程。通过对SN 2023ixf的新观测,我们的计算结果是爆炸后几天内的能量转换率低至1%。这并不排除超新星是宇宙射线工厂的可能性,但这确实意味着我们还有更多关于超新星产生的知识要学习。"这篇论文由马丁-德维萨在奥地利因斯布鲁克大学(University of Innsbruck)期间发表,将刊登在未来出版的《天文学与天体物理学》(Astronomy and Astrophysics)杂志上。即使没有探测到伽马射线,美国宇航局的费米伽马射线太空望远镜也能帮助天文学家了解更多有关宇宙的信息。资料来源:美国宇航局戈达德太空飞行中心宇宙射线及其起源每天,数以万亿计的宇宙射线与地球大气层发生碰撞。其中大约 90% 是氢原子核(或质子),其余的是电子或较重元素的原子核。自 20 世纪初以来,科学家们一直在研究宇宙射线的起源,但这些粒子无法追溯到它们的源头。由于宇宙射线带电,它们在飞往地球的途中会因遇到磁场而改变方向。位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的费米项目科学家伊丽莎白-海斯说:"然而,伽马射线会直接射向我们。宇宙射线在与周围环境中的物质相互作用时会产生伽马射线。费米望远镜是轨道上最灵敏的伽马射线望远镜,因此当它没有探测到预期的信号时,科学家必须对这种缺失做出解释。解开这个谜团,就能更准确地了解宇宙射线的起源。"弗雷德-劳伦斯-惠普尔天文台(Fred Lawrence Whipple Observatory)的48英寸望远镜在2023年6月捕捉到了这张风车星系(Messier 101)的可见光图像。超新星2023ixf的位置被圈了起来。天文台位于亚利桑那州的霍普金斯山上,由哈佛天体物理学中心和史密森尼天文台共同运营。资料来源:平松等人,2023/Sebastian Gomez (STScI)作为宇宙射线加速器的超新星长期以来,天体物理学家一直怀疑超新星是宇宙射线的主要贡献者。当一颗质量至少是太阳 8 倍的恒星耗尽燃料时,就会发生这种爆炸。内核坍缩,然后反弹,推动冲击波向外穿过恒星。冲击波加速粒子,产生宇宙射线。当宇宙射线与恒星周围的其他物质和光线碰撞时,就会产生伽马射线。超新星会极大地影响星系的星际环境。它们的爆炸波和不断膨胀的碎片云可能会持续存在 5 万年以上。2013年,费米测量显示,银河系中的超新星残骸正在加速宇宙射线,当它们撞击星际物质时,会产生伽马射线光。但天文学家说,这些残余物并没有产生足够的高能粒子,无法与科学家在地球上的测量结果相匹配。一种理论认为,超新星可能会在最初爆炸后的几天或几周内加速银河系中能量最高的宇宙射线。但是超新星非常罕见,在银河系这样的星系中,一个世纪才会发生几次。在大约3200万光年的距离内,超新星平均每年只发生一次。从可见光望远镜第一次看到 SN 2023ixf 开始,经过一个月的观测,费米没有探测到伽马射线。挑战与未来研究合著者、法国国家科学研究中心下属蒙彼利埃宇宙与粒子实验室的天体物理学家马蒂厄-雷诺(Matthieu Renaud)说:"不幸的是,看不到伽马射线并不意味着没有宇宙射线。我们必须对所有有关加速机制和环境条件的基本假设进行研究,才能将伽马射线的缺失转化为宇宙射线产生的上限。"研究人员提出了几种可能影响费米观测到该事件产生的伽马射线的情况,比如爆炸碎片的分布方式和恒星周围物质的密度。费米的观测首次为研究超新星爆炸后的状况提供了机会。以其他波长对SN 2023ixf进行的更多观测、基于这一事件的新模拟和模型,以及未来对其他年轻超新星的研究,都将帮助天文学家找到宇宙宇宙射线的神秘来源。费米是戈达德管理的一个天体物理学和粒子物理学合作项目。费米项目是与美国能源部合作开发的,法国、德国、意大利、日本、瑞典和美国的学术机构和合作伙伴也做出了重要贡献。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

SpaceX 发射 ESA 的欧几里得太空望远镜绘制“黑暗宇宙”

SpaceX 发射 ESA 的欧几里得太空望远镜绘制“黑暗宇宙” 7 月 1 日 11:12 a.m. ET,SpaceX 在佛罗里达州卡纳维拉尔角空军基地使用 Falcon 9 火箭成功发射了 ESA 的欧几里得太空望远镜。望远镜以古希腊数学家欧几里得的名字命名,它将飞往日地之间的拉格朗日 L2 点,距离地球 160 万公里,预计需要飞行 1 个月时间。到达预定轨道之后,还需要花 2 个月时间测试和校准仪器。这一过程和 NASA 的韦伯太空望远镜类似。欧几里得望远镜的目标是测绘宇宙中暗物质的大尺度分布结构,并确认暗能量的性质。望远镜的口径为 1.2 米,它主要通过近红外光波长观测宇宙。预计在 2027 年发射的 NASA 南希·格蕾丝·罗曼太空望远镜将在红外波长下观测宇宙,它们将共同创建宇宙的三维地图。来源 ,() 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人