郭明𫓹:英伟达下一代AI芯片R系列/R100将在明年四季度量产

郭明𫓹:英伟达下一代AI芯片R系列/R100将在明年四季度量产 R100的Interposer尺寸尚未定案,有2–3种选择。R100预计将搭配8颗HBM4。GR200的Grace CPU将采台积电的N3制程 (vs. GH200/GB200的CPU采用台积电N5)。目前,英伟达已经意识到,AI服务器的高耗能已成为CSP(云服务提供商)/Hyperscale(超大规模数据中心)采购和数据中心建设的重要挑战。因此,在R系列芯片与系统方案的设计中,除了提升AI算力外,还特别注重了能耗的改善,以满足市场对高效能、低功耗AI解决方案的迫切需求。 ... PC版: 手机版:

相关推荐

封面图片

英伟达称一年推出一款芯片 Blackwell下一代已在准备中

英伟达称一年推出一款芯片 Blackwell下一代已在准备中 此前英伟达的芯片设计频率稳定在两年一次,从一开始2020年发布的Ampere,到2022年的业界宠儿H100芯片(Hopper系列),再到2024年备受期待的Blackwell。但显然,两年对于英伟达来说似乎是太久了。本月早些时候,知名分析师郭明𫓹就透露,英伟达的下一代AI芯片架构Rubin将于2025年问世,最早明年市场就能获得R100 AI GPU。而这条消息目前看来可信度直线上升。黄仁勋表示,英伟达将以非常快的速度前进,新的CPU、新的GPU、新的网络网卡、新的交换机……大量芯片即将到来。换得快所以卖得也快本周早些时候,亚马逊被曝因为AI芯片迭代速度太快而暂停了向英伟达采购的订单,以等待即将发布的Blackwell芯片。后来,亚马逊否认暂停合同之说,但承认将在超级计算机项目中转向采购Blackwell芯片。这也引发了市场对于英伟达芯片更新速度可能导致该公司当代产品滞销的担忧。对此,黄仁勋回应,英伟达新一代GPU在电气和机械上都能向后兼容,并运行相同的软件,客户可以在现有数据中心中轻松从H100过渡到H200再到B100。他认为,随着市场向H200和Blackwell过渡,我们预计一段时间内需求将超过供应。每个人都急于让其基础设施上线,以尽快盈利,因此其对英伟达GPU的订购并不会停滞。黄仁勋提出了一个有趣的问题:企业是想做发布人工智能竞赛下一阶段重大里程碑的首家公司,还是紧隔几天后宣布将效果提升0.3%的第二家公司呢?除此之外,英伟达的首席财务官Colette Kress透露,汽车将成为今年英伟达数据中心最大的垂类行业,并举例称特斯拉已经购买了3.5万个H100芯片来训练其全自动驾驶系统。汽车之外,Meta之类的消费互联网公司也在强劲增长。 ... PC版: 手机版:

封面图片

下一代AI芯片,拼什么?

下一代AI芯片,拼什么? 英伟达的Hopper GPU/Blackwell/Rubin、AMD的Instinct 系列、英特尔的Gaudi芯片,这场AI芯片争霸战拼什么?这是速度之争,以英伟达为首,几家巨头将芯片推出速度提升到了一年一代,展现了AI领域竞争的“芯”速度;是技术的角逐,如何让芯片的计算速度更快、功耗更低更节能、更易用上手,将是各家的本事。尽管各家厂商在AI芯片方面各有侧重,但细看之下,其实存在着不少的共同点。一年一代,展现AI领域"芯"速度虽然摩尔定律已经开始有些吃力,但是AI芯片“狂欢者们”的创新步伐以及芯片推出的速度却越来越快。英伟达Blackwell还在势头之上,然而在不到3个月后的Computex大会上,英伟达就又祭出了下一代AI平台Rubin。英伟达首席执行官黄仁勋表示,以后每年都会发布新的AI芯片。一年一代芯片,再次刷新了AI芯片的更迭速度。英伟达的每一代GPU都会以科学家名字来命名。Rubin也是一位美国女天文学家Vera Rubin的名字命名。Rubin将配备新的GPU、名为Vera的新CPU和先进的X1600 IB网络芯片,将于2026年上市。目前,Blackwell和Rubin都处于全面开发阶段,其一年前在2023年在Computex上发布的GH200 Grace Hopper“超级芯片”才刚全面投入生产。Blackwell将于今年晚些时候上市,Blackwell Ultra将于2025年上市,Rubin Ultra将于2027年上市。紧跟英伟达,AMD也公布了“按年节奏”的AMD Instinct加速器路线图,每年推出一代AI加速器。Lisa Su在会上表示:“人工智能是我们的首要任务,我们正处于这个行业令人难以置信的激动人心的时代的开始。”继去年推出了MI300X,AMD的下一代MI325X加速器将于今年第四季度上市,Instinct MI325X AI加速器可以看作是MI300X系列的强化版,Lisa Su称其速度更快,内存更大。随后,MI350系列将于2025年首次亮相,采用新一代AMD CDNA 4架构,预计与采用AMD CDNA 3的AMD Instinct MI300系列相比,AI推理性能将提高35倍。MI350对标的是英伟达的Blackwell GPU,按照AMD的数据,MI350系列预计将比英伟达B200产品多提供50%的内存和20%的计算TFLOP。基于AMD CDNA“Next”架构的AMD Instinct MI400系列预计将于2026年上市。英特尔虽然策略相对保守,但是却正在通过价格来取胜,英特尔推出了Gaudi人工智能加速器的积极定价策略。英特尔表示,一套包含八个英特尔Gaudi 2加速器和一个通用基板的标准数据中心AI套件将以65,000美元的价格提供给系统提供商,这大约是同类竞争平台价格的三分之一。英特尔表示,一套包含八个英特尔Gaudi 3加速器的套件将以125,000美元的价格出售,这大约是同类竞争平台价格的三分之二。AMD和NVIDIA虽然不公开讨论其芯片的定价,但根据定制服务器供应商Thinkmate的说法,配备八个NVIDIA H100 AI芯片的同类HGX服务器系统的成本可能超过30万美元。一路高歌猛进的芯片巨头们,新产品发布速度和定价凸显了AI芯片市场的竞争激烈程度,也让众多AI初创芯片玩家望其项背。可以预见,三大芯片巨头将分食大部分的AI市场,大量的AI初创公司分得一点点羹汤。工艺奔向3纳米AI芯片走向3纳米是大势所趋,这包括数据中心乃至边缘AI、终端。3纳米是目前最先进工艺节点,3纳米工艺带来的性能提升、功耗降低和晶体管密度增加是AI芯片发展的重要驱动力。对于高能耗的数据中心来说,3纳米工艺的低功耗特性至关重要,它能够有效降低数据中心的运营成本,缓解数据中心的能源压力,并为绿色数据中心的建设提供重要支撑。英伟达的B200 GPU功耗高达1000W,而由两个B200 GPU和一个Grace CPU组成的GB200解决方案消耗高达2700W的功率。这样的功耗使得数据中心难以为这些计算GPU的大型集群提供电力和冷却,因此英伟达必须采取措施。Rubin GPU的设计目标之一是控制功耗,天风国际证券分析师郭明𫓹在X上写道,Rubin GPU很可能采用台积电3纳米工艺技术制造。另据外媒介绍,Rubin GPU将采用4x光罩设计,并将使用台积电CoWoS-L封装技术。与基于Blackwell的产品相比,Rubin GPU是否真的能够降低功耗,同时明显提高性能,或者它是否会专注于性能效率,还有待观察。AMD Instinct系列此前一直采用5纳米/6纳米双节点的Chiplet模式,而到了MI350系列,也升级为了3纳米。半导体知名分析师陆行之表示,如果英伟达在加速需求下对台积电下单需求量大,可能会让AMD得不到足够产能,转而向三星下订单。来源:videocardz英特尔用于生成式AI的主打芯片Gaudi 3采用的是台积电的5纳米,对于 Gaudi 3,这部分竞争正在略微缩小。不过,英特尔的重心似乎更侧重于AI PC,从英特尔最新发布的PC端Lunar Lake SoC来看,也已经使用了3纳米。Lunar Lake包含代号为Lion Cove的新 Lion Cove P核设计和新一波Skymont E 核,它取代了 Meteor Lake 的 Low Power Island Cresmont E 核。英特尔已披露其采用 4P+4E(8 核)设计,禁用超线程/SMT。整个计算块,包括P核和E核,都建立在台积电的N3B节点上,而SoC块则使用台积电N6节点制造。英特尔历代PC CPU架构(来源:anandtech)在边缘和终端AI芯片领域,IP大厂Arm也在今年5月发布了用于智能手机的第五代 Cortex-X 内核以及带有最新高性能图形单元的计算子系统 (CSS)。Arm Cortex-X925 CPU就利用了3纳米工艺节点,得益于此,该CPU单线程性能提高了36%,AI性能提升了41%,可以显著提高如大语言模型(LLM)等设备端生成式AI的响应能力。高带宽内存(HBM)是必需品HBM(High Bandwidth Memory,高带宽存储器)已经成为AI芯片不可或缺的关键组件。HBM技术经历了几代发展:第一代(HBM)、第二代(HBM2)、第三代(HBM2E)、第四代(HBM3)和第五代(HBM3E),目前正在积极发展第六代HBM。HBM不断突破性能极限,满足AI芯片日益增长的带宽需求。在目前一代的AI芯片当中,各家基本已经都相继采用了第五代HBM-HBM3E。例如英伟达Blackwell Ultra中的HBM3E增加到了12颗,AMD MI325X拥有288GB的HBM3e内存,比MI300X多96GB。英特尔的 Gaudi 3封装了八块HBM芯片,Gaudi 3能够如此拼性价比,可能很重要的一点也是它使用了较便宜的HBM2e。英特尔Gaudi 3的HBM比H100多,但比H200、B200或AMD的MI300都少(来源:IEEE Spectrum)至于下一代的AI芯片,几乎都已经拥抱了第六代HBM-HBM4。英伟达Rubin平台将升级为HBM4,Rubin GPU内置8颗HBM4,而将于2027年推出的Rubin Ultra则更多,使用了12颗HBM4。AMD的MI400也奔向了HBM4。从HBM供应商来看,此前AMD、英伟达等主要采用的是SK海力士。但现在三星也正在积极打入这些厂商内部,AMD和三星目前都在测试三星的HBM。6月4日,在台北南港展览馆举行的新闻发布会上,黄仁勋回答了有关三星何时能成为 NVIDIA 合作伙伴的问题。他表示:“我们需要的 HBM 数量非常大,因此供应速度至关重要。我们正在与三星、SK 海力士和美光合作,我们将收到这三家公司的产品。”HBM的竞争也很白热化。SK海力士最初计划在2026年量产HBM4,但已将其时间表调整为更早。三星电子也宣布计划明年开发HBM4。三星与SK海力士围绕着HBM的竞争也很激烈,两家在今年将20%的DRAM产能转向HBM。美光也已加入到了HBM大战行列。炙手可热的HBM也成为了AI芯片大规模量产的掣肘。目前,存储大厂SK Hynix到2025年之前的HBM4产能已基本售罄,供需矛盾日益凸显。根据SK海力士预测,AI芯片的繁荣带动HBM市场到2027年将出现82%的复合年增长率。分析师也认为,预计明年HBM市场将比今年增长一倍以上。三星电子DRAM产品与技术执行副总裁Hwang Sang-joon在KIW 2023上表示:“我们客户当前的(HBM)订单决定比去年增加了一倍多。”三星芯片负责业务的设备解决方案部门总裁兼负责人 Kyung Kye-hyun 在公司会议上更表示,三星将努力拿下一半以上的... PC版: 手机版:

封面图片

知情人士:英伟达中国特供版AI芯片今年二季度量产

知情人士:英伟达中国特供版AI芯片今年二季度量产 知情人士称,美国芯片制造商英伟达计划从今年第二季度起,开始量产为中国设计的人工智能(AI)芯片。 路透社星期一(1月8日)引述两名知情人士报道上述消息。英伟达将开始量产的H20芯片是美国政府去年10月颁布新禁令后,英伟达为中国市场开发的三款芯片中最强大的一款。 知情人士说,H20芯片原定于去年11月推出,但因为服务器制造商在集成该芯片时遇到了问题,计划被推迟。 报道称,除了H20,英伟达还计划推出另外两款符合新限制的芯片L20和L2。不过,英伟达尚未宣布出售这三款产品中的任何一款。 另据路透社早前报道,由于担心美国可能再次收紧限制,中国企业不愿购买降级的H20,并正在测试国内替代品。例如中国互联网巨头百度就从华为订购了AI芯片,不再向英伟达订购。 根据SemiAnalysis对芯片规格的分析,H20、L20和L2包含英伟达大部分用于人工智能工作的最新功能,但为了遵守美国政府新规,计算能力有所削减。 2024年1月8日 5:47 PM

封面图片

英伟达发布新一代数据中心超级芯片

英伟达发布新一代数据中心超级芯片 在周二的主题演讲中,黄仁勋介绍了下一代 DGX GH200 Grace Hopper 超级芯片,专为 OpenAI 的 ChatGPT 等大内存生成性人工智能模型设计,以扩展全球的数据中心。 在发布会前的新闻发布会上,英伟达的超大规模和高性能计算部门主管 Ian Buck 告诉记者,GH200 比该公司的 H100 数据中心系统容纳了更多的内存和更大的带宽。GH200 采用了英伟达的 Hopper GPU 架构,并将其与 Arm Ltd. 的 Grace CPU 架构结合起来。该芯片拥有 141 GB 的 HBM3 内存,以及每秒 5 TB 的带宽。 GH200 可以在 NVLink 的双 GH200 系统中叠加使用,使内存增加 3.5 倍,带宽增加两倍。这两种产品都将在 2024 年第二季度上市,但英伟达没有透露定价。

封面图片

谷歌推出基于 Arm 的数据中心处理器 Axion 和下一代 TPU 芯片

谷歌推出基于 Arm 的数据中心处理器 Axion 和下一代 TPU 芯片 谷歌9日在其年度云计算会议上公布了其下一代数据中心 AI 加速芯片 TPU 的细节,并宣布推出自行设计的基于 ARM 架构的数据中心 CPU。 谷歌的张量处理单元 (TPU) 是英伟达制造的先进 AI 芯片的少数可行替代品之一,但开发人员只能通过谷歌云访问它们,而不能直接购买。谷歌表示,下一代 TPU v5p 芯片可在8,960个芯片的芯片集群中运行,原始性能可达到上一代 TPU 的两倍。为了确保芯片组以最佳性能运行,谷歌采用了液体冷却技术。TPU v5p 将于9日在谷歌云正式发布。 谷歌计划通过谷歌云提供被称为 Axion 的基于 ARM 的 CPU。Axion 芯片的性能比通用 ARM 芯片高出30%,比英特尔和 AMD 生产的当前一代 x86 芯片高出50%。Axion 已在多项谷歌服务中使用,并计划于今年晚些时候向公众开放。

封面图片

英伟达一季度营收同比下降13%,降幅接近市场预期和四季度降幅的一半;AI芯片所在数据中心业务的营收创历史新高,保持10%以上同比

英伟达一季度营收同比下降13%,降幅接近市场预期和四季度降幅的一半;AI芯片所在数据中心业务的营收创历史新高,保持10%以上同比增速,游戏业务继续下滑,但收入较预期高13%; 而二季度营收指引同比增近33%,达到创纪录的110 亿美元,较分析师预期高53%。分析师预计二季度营收71.8亿美元,同比下降13.4%。业绩电话会上英伟达称,锁定了数据中心芯片的大幅增长,众多云公司竞相部署AI芯片。 财报公布后,英伟达股价在周三盘后迅速拉升,盘后涨幅最高接近 30%

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人