中国科大构建出基于纠缠的城域量子网络

中国科大构建出基于纠缠的城域量子网络 通过量子态的远程传输来构建量子网络是大尺度量子信息处理的基本要素。基于量子网络,可以实现广域量子密钥分发以及分布式量子计算和量子传感,构成未来“量子互联网”的技术基础。目前,基于单光子传输的量子密钥网络已发展成熟,而面向分布式量子计算、分布式量子传感等进一步量子网络应用,需要采用量子中继技术在远距离量子存储器间构建量子纠缠,在此基础上通过广域量子隐形传态将各个量子信息处理节点连接起来。新研究使得现实量子纠缠网络的距离由几十米提升至几十公里,为后续开展分布式量子计算、分布式量子传感等量子网络应用奠定基础,该研究是国际首个城域多节点量子网络实验。《自然》杂志也在同一期发表了美国哈佛大学Lukin团队的相关实验进展,该团队首次在SiV色心体系实现了双节点远距离纠缠。二者相比,中国科大成果在纠缠效率方面有明显优势,比哈佛大学的研究高两个数量级以上。 ... PC版: 手机版:

相关推荐

封面图片

中国量子网络领域取得新突破

中国量子网络领域取得新突破 清华大学交叉信息研究院博士生冯路(左)和助理研究员黄园园(右)正在实验室研究。受访者供图清华大学交叉信息研究院助理研究员黄园园介绍,他们利用同种离子的两对超精细能级结构,分别编码出量子网络中用于与光子产生纠缠的“通讯比特”和用于存储信息的“存储比特”。 同时,利用激光还实现了两种量子比特间微秒量级的相干转换。实验发现,通过此方法制备出的通讯比特,可在数百毫秒的时间内生成离子-光子纠缠;通过自旋回波方法可延长存储比特的存储寿命,实现相干时间达到秒量级的存储量子比特。通过比较有无离子-光子纠缠生成操作时存储比特的保真度变化, 研究人员证实了两种量子比特之间低于实验精度的串扰误差,从而实现了无串扰的量子网络节点。 ... PC版: 手机版:

封面图片

量子纠缠光子在波士顿街道下飞行了35公里

量子纠缠光子在波士顿街道下飞行了35公里 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 就像我们所熟知的互联网一样,量子网络通过光这里是量子纠缠光子来发送信息。但是,它们需要"中继器",以防止这些光子像光通常所做的那样发生长距离散射,而且中继器必须能够在不破坏光子纠缠和修改信息的情况下发送光子。本次演示中部署的量子链路图。携带与量子存储器纠缠的量子信息的光子穿过剑桥和波士顿的多个街区,行程超过 35 公里,然后返回哈佛大学,在另一个实验室中将其纠缠转移到另一个存储器上。哈佛大学和 AWS 称,这些实验节点利用钻石中的空腔"捕获光线并迫使其与量子存储器相互作用"。这些节点可以利用现有的纳米加工技术批量生产。在实验过程中,研究小组将一个量子比特编码成一个光子,并将其从哈佛大学实验室的量子存储器上弹出。以下是文档摘录:当光子与量子存储器相互作用时,它就会与存储器纠缠在一起这意味着对光子或 存储器进行的测量都会提供对方的状态信息(从而修改对方的状态)。然而,光子并没有被测量(从而提取信息),而是经过量子频率转换,从可见光频率(量子存储器工作的频率)转换到电信频率(光纤中的损耗最小的频率)。然后,(现在是电信频率的)光子在地下光纤网络中来回穿梭,最后返回哈佛大学,并在那里被转换回可见光频率。最后,光子从第二个存储器弹出后,被送往一个探测器,探测器会记录光子的存在,但不会显示光中包含的任何潜在量子信息。然后,光子从可见光频率转换为电信频率,再反弹到不同的实验室,从而完成旅程。AWS 称,早期实验显示,量子纠缠光子的传输距离超过 35 公里。纠缠光子的存储时间超过一秒,该公司称这"足以让光传播 30 多万公里",足以绕地球 7.5 圈。网络中使用的设备示意图。位于一个光子设备(左下)内的 SiV 与光子纠缠,光子穿过电信光纤(上),然后与位于不同位置(右)的量子存储器相互作用。最终,两个空间上分离的量子存储器之间产生了纠缠。能源部解释说,量子网络与量子计算的原理相同,都是利用光子的量子态来携带信息。量子网络的实验已经进行了一段时间了,但还没有人制造出完全商业化的版本。AWS 表示,在其量子网络具备可扩展性和商业可行性之前,还需要进行更多改进。到目前为止,它的速度还很慢,而且一次只能发送一个量子存储器。 ... PC版: 手机版:

封面图片

物理学家实现分子的量子纠缠

物理学家实现分子的量子纠缠 物理学家首次实现了对分子的量子纠缠。这一突破可能有助于推动量子计算的实用化。论文发表在《科学》期刊上。实现可控的量子纠缠一直是一大挑战,这次实验之前分子的可控量子纠缠一直无法实现。普林斯顿大学的物理学家找到了方法控制单个分子诱导其进入到互锁量子态。研究人员相信相比原子,分子具有优势,更适合量子信息处理和复杂材料量子模拟等应用。相比原子,分子有更多的量子自由度,能以新方式交互。论文合作者 Yukai Lu 指出这意味着存储和处理量子信息的新方法。来源 ,, 频道:@kejiqu 群组:@kejiquchat

封面图片

中国科大首次实现光子的分数量子反常霍尔态

中国科大首次实现光子的分数量子反常霍尔态 成果示意图。16个非线性“光子盒”阵列囚禁的微波光子强相互作用形成分数量子反常霍尔态。霍尔效应是指当电流通过置于磁场中的材料时,电子受到洛伦兹力的作用,在材料内部产生垂直于电流和磁场方向的电压。反常霍尔效应是指无需外部磁场的情况下观测到相关效应。分数量子霍尔态展现出非平庸的多体纠缠,对其研究所衍生出的拓扑序、复合费米子等理论成果逐渐成为多体物理学的基本模型。与此同时,分数量子霍尔态可激发出局域的准粒子,这种准粒子具有奇异的分数统计和拓扑保护性质,有望成为拓扑量子计算的载体。传统的量子霍尔效应实验研究采用“自顶而下”的方式,即在特定材料的基础上,利用该材料已有的结构和性质实现制备量子霍尔态。通常情况下,需要极低温环境、极高的二维材料纯净度和极强的磁场,对实验要求较为苛刻。此外,传统“自顶而下”的方法难以对系统微观量子态进行单点位独立地操控和测量,一定程度上限制了其在量子信息科学中的应用。人工搭建的量子系统结构清晰,灵活可控,是一种“自底而上”研究复杂量子物态的新范式。其无需外磁场,通过变换耦合形式即可构造出等效人工规范场;通过对系统进行高精度可寻址的操控,可实现对高集成度量子系统微观性质的全面测量,并加以进一步可控的利用。这类技术被称为量子模拟,是“第二次量子革命”的重要内容,有望在近期应用于模拟经典计算困难的量子系统并达到“量子计算优越性”。据介绍,此前,国际上已经基于其开展了一些合成拓扑物态、研究拓扑性质的量子模拟工作。然而,由于以往系统中耦合形式和非线性强度的限制,人们一直未能在二维晶格中为光子构建人工规范场。为解决这一重大挑战,研究团队在国际上自主研发并命名了一种新型超导量子比特Plasmonium,打破了目前主流的Transmon(传输子型)量子比特相干性与非简谐性之间的制约,用更高的非简谐性提供了光子间更强的排斥作用。进一步,团队通过交流耦合的方式构造出作用于光子的等效磁场,使光子绕晶格的流动可积累Berry(贝里)相位,解决了实现光子分数量子反常霍尔效应的两个关键难题。同时,这样的人造系统具有可寻址、单点位独立控制和读取,以及可编程性强的优势,为实验观测和操纵提供了新的手段。在该项工作中,研究人员观测到了分数量子霍尔态独有的拓扑关联性质,验证了该系统的分数霍尔电导。同时,他们通过引入局域势场的方法,跟踪了准粒子的产生过程,证实了准粒子的不可压缩性质。《科学》杂志审稿人高度评价这一工作,认为这一工作“是利用相互作用光子进行量子模拟的重大进展”“一种新颖的局域单点控制和自底而上的途径”。诺贝尔物理学奖得主Frank Wilczek评价,这种“自底而上”、用人造原子构建哈密顿量的途径是一个“非常有前途的想法”,这是一个令人印象深刻的实验,为基于任意子的量子信息处理迈出了重要一步。沃尔夫奖获得者Peter Zoller评价,“这在科学和技术上都是一项杰出的成就” “实现这样的目标是多年来全球顶级实验室竞争的量子模拟的圣杯之一”。 ... PC版: 手机版:

封面图片

开创性实验测量地球自转对量子纠缠的影响

开创性实验测量地球自转对量子纠缠的影响 萨格纳克干涉仪2公里长的光纤缠绕在边长1.4米的方形铝制框架上。 图片来源:奥地利维也纳大学光学萨格纳克干涉仪在测量旋转时已经非常灵敏,但是基于量子纠缠的干涉仪具有进一步提高这种灵敏度的潜力。量子纠缠是一种现象,其中两个或多个粒子共享一种状态,即使它们被远距离分开,其中一个粒子的测量也会影响另一个粒子的状态。研究团队建造了一个巨大的光学萨格纳克干涉仪,并在数小时内将噪声保持在低而稳定的水平。这使得他们能够检测到足够高质量的纠缠光子对,相比以前的光学萨格纳克干涉仪,旋转精度提高了1000倍。在一项实验室实验中,科学家们将纠缠光子(红色方块)送入一个干涉仪(如图),该干涉仪的灵敏度足以测量地球的自转。马尔科-迪维塔在实际实验中,两个纠缠光子在巨大线圈上缠绕的2公里长的光纤内传播,实现了一个有效面积超过700平方米的干涉仪。针对地球自转,研究人员还设计了一个巧妙的方案:将光纤分成两个等长的线圈,并通过一个光学开关将它们连接起来。通过打开和关闭开关,可有效地根据需要取消旋转信号,并延长大型设备的稳定性。这种方式就像“欺骗”光,让它认为处于一个非旋转的宇宙中。利用这项实验,研究人员观察到了地球自转对最大纠缠双光子态的影响。这证实了爱因斯坦狭义相对论和量子力学中描述的旋转参考系和量子纠缠之间的相互作用。研究人员表示,该研究结果和方法将为进一步提高基于量子纠缠的传感器旋转灵敏度奠定基础,可能会为未来通过时空曲线测试量子纠缠行为的实验开辟道路。 ... PC版: 手机版:

封面图片

大型强子对撞机观测到了顶夸克及其反粒子之间的量子纠缠

大型强子对撞机观测到了顶夸克及其反粒子之间的量子纠缠 粒子物理学中的量子纠缠最近,在安东-蔡林格(Anton Zeilinger)和他的团队首次确证两个光子之间存在纠缠的二十年后,ATLAS 和 CMS 实验报告说,在大型强子对撞机上观测到了同时静止产生的顶夸克及其反粒子之间的量子纠缠。确认最重的基本粒子顶夸克之间的量子纠缠为探索我们世界的量子本质开辟了一条新途径,其能量远远超出了量子光学等领域所能达到的水平。同时,大型强子对撞机上顶夸克对的巨大产生率提供了顶夸克的巨大数据样本,为这些研究提供了独一无二的机会。顶级夸克和反粒子之间的量子纠缠在大型强子对撞机上得到证实,标志着高能量子物理学在大量数据和先进分析方法的支持下取得了重大进展。来源:欧洲核子研究中心爱因斯坦对量子力学的挑战在量子力学中,如果我们知道其中一个粒子在测量另一个粒子时的状态,那么这两个粒子就是纠缠的。即使这两个最初纠缠在一起的粒子在测量前彼此相距很远,情况也是如此。这就是爱因斯坦所说的"超距作用":虽然信息的传播速度不可能超过光速,但在对第一个粒子进行测量时,第二个粒子保证会立即处于相应的状态。1934 年,爱因斯坦和他的合作者提出了一个思想实验,他们认为这个实验揭示了量子力学的不一致性。为了解决这个悖论,他们提出,我们对纠缠的描述是不完整的,系统中还有其他我们无法通过实验获得的量在起作用。那么,纠缠就是我们对这些隐藏变量一无所知的结果。测量纠缠的先进技术在一项新的测量中,CMS 合作小组首次研究了以极快的速度同时产生的顶夸克和顶反夸克的自旋纠缠。因此,这两个粒子在衰变之前相距甚远,也就是说,它们之间的距离大于以光速传输的信息所能覆盖的距离。夸克和反夸克自旋之间的相关性是通过观察它们衰变产物的角度分布来测量的。分析中采用了最先进的机器学习方法,以正确分配顶(反)夸克衰变产物,并改进系统不确定性的建模。图 1 显示了在两个不同运动学区域观察到的纠缠程度,以参数ΔE 为特征。图 1:在两个运动学区域观察到的以ΔE 为特征的纠缠水平。图中显示了测量结果(点)及其不确定性,并与 SM 预测值(红线)进行了比较。水平蓝线对应于夸克和反夸克之间以光速交换信息所能解释的最大纠缠度ΔE临界值。第一个分段对应于产生的横动量小于 50 GeV 的顶夸克,而在最后一个分段中,顶夸克对具有很高的不变质量,即相互之间的运动速度很大。在这两个运动学区域测得的ΔE 都大于 1,证实了两个粒子之间的纠缠。特别是在第二个分区,顶夸克-反夸克对的相对速度非常大,只有 10%的情况下它们才有机会进行交流。在这里,纠缠度明显高于ΔE临界值,而ΔE临界值是在光速下通过隐藏变量进行信息交流所能解释的纠缠度。因此,测量结果表明,在已知最重的粒子之间确实存在"超距作用"。资料来源:欧洲核子研究中心编译自/citechdaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人