开创性实验测量地球自转对量子纠缠的影响

开创性实验测量地球自转对量子纠缠的影响 萨格纳克干涉仪2公里长的光纤缠绕在边长1.4米的方形铝制框架上。 图片来源:奥地利维也纳大学光学萨格纳克干涉仪在测量旋转时已经非常灵敏,但是基于量子纠缠的干涉仪具有进一步提高这种灵敏度的潜力。量子纠缠是一种现象,其中两个或多个粒子共享一种状态,即使它们被远距离分开,其中一个粒子的测量也会影响另一个粒子的状态。研究团队建造了一个巨大的光学萨格纳克干涉仪,并在数小时内将噪声保持在低而稳定的水平。这使得他们能够检测到足够高质量的纠缠光子对,相比以前的光学萨格纳克干涉仪,旋转精度提高了1000倍。在一项实验室实验中,科学家们将纠缠光子(红色方块)送入一个干涉仪(如图),该干涉仪的灵敏度足以测量地球的自转。马尔科-迪维塔在实际实验中,两个纠缠光子在巨大线圈上缠绕的2公里长的光纤内传播,实现了一个有效面积超过700平方米的干涉仪。针对地球自转,研究人员还设计了一个巧妙的方案:将光纤分成两个等长的线圈,并通过一个光学开关将它们连接起来。通过打开和关闭开关,可有效地根据需要取消旋转信号,并延长大型设备的稳定性。这种方式就像“欺骗”光,让它认为处于一个非旋转的宇宙中。利用这项实验,研究人员观察到了地球自转对最大纠缠双光子态的影响。这证实了爱因斯坦狭义相对论和量子力学中描述的旋转参考系和量子纠缠之间的相互作用。研究人员表示,该研究结果和方法将为进一步提高基于量子纠缠的传感器旋转灵敏度奠定基础,可能会为未来通过时空曲线测试量子纠缠行为的实验开辟道路。 ... PC版: 手机版:

相关推荐

封面图片

量子纠缠光子在波士顿街道下飞行了35公里

量子纠缠光子在波士顿街道下飞行了35公里 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 就像我们所熟知的互联网一样,量子网络通过光这里是量子纠缠光子来发送信息。但是,它们需要"中继器",以防止这些光子像光通常所做的那样发生长距离散射,而且中继器必须能够在不破坏光子纠缠和修改信息的情况下发送光子。本次演示中部署的量子链路图。携带与量子存储器纠缠的量子信息的光子穿过剑桥和波士顿的多个街区,行程超过 35 公里,然后返回哈佛大学,在另一个实验室中将其纠缠转移到另一个存储器上。哈佛大学和 AWS 称,这些实验节点利用钻石中的空腔"捕获光线并迫使其与量子存储器相互作用"。这些节点可以利用现有的纳米加工技术批量生产。在实验过程中,研究小组将一个量子比特编码成一个光子,并将其从哈佛大学实验室的量子存储器上弹出。以下是文档摘录:当光子与量子存储器相互作用时,它就会与存储器纠缠在一起这意味着对光子或 存储器进行的测量都会提供对方的状态信息(从而修改对方的状态)。然而,光子并没有被测量(从而提取信息),而是经过量子频率转换,从可见光频率(量子存储器工作的频率)转换到电信频率(光纤中的损耗最小的频率)。然后,(现在是电信频率的)光子在地下光纤网络中来回穿梭,最后返回哈佛大学,并在那里被转换回可见光频率。最后,光子从第二个存储器弹出后,被送往一个探测器,探测器会记录光子的存在,但不会显示光中包含的任何潜在量子信息。然后,光子从可见光频率转换为电信频率,再反弹到不同的实验室,从而完成旅程。AWS 称,早期实验显示,量子纠缠光子的传输距离超过 35 公里。纠缠光子的存储时间超过一秒,该公司称这"足以让光传播 30 多万公里",足以绕地球 7.5 圈。网络中使用的设备示意图。位于一个光子设备(左下)内的 SiV 与光子纠缠,光子穿过电信光纤(上),然后与位于不同位置(右)的量子存储器相互作用。最终,两个空间上分离的量子存储器之间产生了纠缠。能源部解释说,量子网络与量子计算的原理相同,都是利用光子的量子态来携带信息。量子网络的实验已经进行了一段时间了,但还没有人制造出完全商业化的版本。AWS 表示,在其量子网络具备可扩展性和商业可行性之前,还需要进行更多改进。到目前为止,它的速度还很慢,而且一次只能发送一个量子存储器。 ... PC版: 手机版:

封面图片

开创性的"黑暗"粒子实验让纳米尺寸的玻璃珠在宏观尺度上展现量子效应

开创性的"黑暗"粒子实验让纳米尺寸的玻璃珠在宏观尺度上展现量子效应 在该实验中,光学悬浮纳米粒子冷却到基态后,会在静电力或磁力产生的非光学("暗")电势中演化。在暗电势中的这种演变有望快速、可靠地产生宏观量子叠加态。一颗纳米级大小的玻璃珠在静电力或磁力产生的势能中演化,进入宏观量子叠加态。资料来源:Helene Hainzer激光能将纳米级大小的玻璃球冷却到运动基态。如果让这种玻璃球单独存在,在空气分子的轰击和入射光的散射下,玻璃球会迅速升温并离开量子态,从而限制了量子控制。为了避免这种情况,研究人员建议让玻璃球在黑暗中演化,关闭光线,仅由非均匀静电力或磁力引导。这种演化速度不仅足以防止杂散气体分子的加热,而且还能解除极端局部化,并刻画出明确的量子特征。最近发表在《物理评论快报》上的论文还讨论了这一建议如何规避这类实验的实际挑战。这些挑战包括需要快速的实验运行、尽量少使用激光以避免退相干,以及快速重复同一粒子实验运行的能力。这些考虑因素对于减轻低频噪声和其他系统误差的影响至关重要。这项建议已经与 Q-Xtreme 的实验合作伙伴进行了广泛讨论,Q-Xtreme 是由欧盟资助的 ERC 协同资助项目。奥里奥尔-罗梅罗-伊萨特的理论团队说:"我们提出的方法与他们实验室目前的发展相一致,他们应该很快就能在经典体系中用热粒子测试我们的协议,这将非常有助于测量和最大限度地减少激光关闭时的噪声源。我们相信,虽然最终的量子实验将不可避免地具有挑战性,但它应该是可行的,因为它符合制备这些宏观量子叠加态的所有必要标准。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

量子气体显微镜QUIONE利用开创性的锶显微技术深入研究材料的微观特性

量子气体显微镜QUIONE利用开创性的锶显微技术深入研究材料的微观特性 量子物理学需要高精度传感技术来深入研究材料的微观特性。从最近出现的模拟量子处理器来看,所谓的量子气体显微镜已被证明是在原子层面了解量子系统的强大工具。这些设备可以产生分辨率极高的量子气体图像:它们可以检测到单个原子。现在,ICFO研究人员(西班牙巴塞罗那)Sandra Buob、Jonatan Höschele、Vasiliy Makhalov博士和Antonio Rubio-Abadal博士,在ICFO的ICREA教授Leticia Tarruell的领导下,解释了他们是如何制造出自己的量子气体显微镜的,该显微镜以希腊雪女神命名为QUIONE。该小组的量子气体显微镜是世界上唯一一台对锶量子气体的单个原子进行成像的显微镜,也是西班牙第一台此类显微镜。除了可以分辨单个原子的极具冲击力的图像之外,QUIONE 的目标是量子模拟。正如 ICREA 教授 Leticia Tarruell 所解释的那样:"量子模拟可以用来将非常复杂的系统归结为更简单的模型,进而理解当前计算机无法回答的开放性问题,例如为什么有些材料即使在相对较高的温度下也能无损耗地导电"。玻璃池图片,中间为锶气云 图源:ICFOICFO 小组在这一领域的研究获得了国家层面(西班牙皇家物理学会的奖励,以及 BBVA 基金会、Ramón Areces 基金会、La Caixa 基金会和 Cellex 基金会的项目和赠款)和欧洲层面(包括一个 ERC 项目)的支持。此外,作为加泰罗尼亚政府推广量子技术承诺的一部分,QUIONE 还得到了加泰罗尼亚政府通过企业与工作部数字政策秘书处提供的共同资助。这项实验的奇特之处在于,他们成功地将锶气体带入量子态,将其置于光学晶格中,使原子可以通过碰撞产生相互作用,然后应用单原子成像技术。这三个因素加在一起,使 ICFO 的锶量子气体显微镜在同类产品中独一无二。实验室地图和量子模拟器的位置。资料来源:ICFO为什么是锶?迄今为止,这些显微镜装置依赖于锂和钾等碱性原子,与锶等碱土原子相比,锂和钾的光学光谱特性更为简单。这意味着在这些实验中,锶可以提供更多的成分。事实上,近年来,锶的独特性质使其成为量子计算和量子模拟领域非常受欢迎的应用元素。例如,锶原子云可以用作原子量子处理器,从而解决目前经典计算机所无法解决的问题。总之,ICFO 的研究人员看到了锶在量子模拟方面的巨大潜力,他们开始着手制造自己的量子气体显微镜。QUIONE 就是这样诞生的。实验室中的团队。从左至右Sandra Buob、Antonio Rubio-Abadal、Vasiliy Makhalov、Jonatan Höschele 和 Leticia Tarruell。资料来源:ICFO为此,他们首先降低了锶气体的温度。利用几束激光的作用力,原子的速度可以降低到几乎不动的程度,几乎不移动,在短短几毫秒内就能将温度降低到几乎绝对零度。然后,量子力学定律就会支配它们的行为,原子就会显示出量子叠加和纠缠等新特征。之后,在特殊激光器的帮助下,研究人员激活了光晶格,使原子沿着空间排列成网格状。"你可以把它想象成一个鸡蛋盒,其中的各个位置实际上就是你放鸡蛋的地方。但我们用原子代替了鸡蛋,用光学晶格代替了纸盒,"文章的第一作者桑德拉-布布解释说。"蛋杯"中的原子相互影响,有时会发生量子隧道效应,从一个地方移动到另一个地方。原子间的这种量子动力学模拟了某些材料中电子的量子动力学。因此,对这些系统的研究有助于理解某些材料的复杂行为,而这正是量子模拟的关键理念。气体和光学晶格准备就绪后,研究人员立即用显微镜拍摄了图像,终于可以逐个原子地观察锶量子气体了。至此,"QUIONE"的建造工作已经取得了成功,但它的创造者们还想从中获得更多。因此,除了照片之外,他们还拍摄了原子的视频,并能够观察到,虽然原子在成像过程中应该保持静止,但它们有时会跳到附近的晶格部位。这可以用量子隧道现象来解释。"原子从一个位置"跳"到另一个位置。这是非常美丽的景象,因为我们亲眼目睹了原子固有量子行为的直接表现。最后,研究小组利用他们的量子气体显微镜证实,锶气体是一种超流体,一种没有粘性的物质流动的量子相。"我们突然关闭了晶格激光器,这样原子就可以在空间膨胀并相互干涉。由于超流体中原子的波粒二象性,这就产生了干涉图案。"安东尼奥-鲁比奥-阿巴达尔博士解释说:"当我们的设备捕捉到它时,我们验证了样品中超流体的存在。""对于量子模拟来说,这是一个非常激动人心的时刻,"ICREA 教授莱蒂西亚-塔鲁埃尔(Leticia Tarruell)说。"现在,我们的量子气体显微镜中又增加了锶,也许不久之后我们就能模拟更复杂、更奇特的材料。新的物质相有望出现。我们还期望获得更强的计算能力,将这些机器用作模拟量子计算机。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科大构建出基于纠缠的城域量子网络

中国科大构建出基于纠缠的城域量子网络 通过量子态的远程传输来构建量子网络是大尺度量子信息处理的基本要素。基于量子网络,可以实现广域量子密钥分发以及分布式量子计算和量子传感,构成未来“量子互联网”的技术基础。目前,基于单光子传输的量子密钥网络已发展成熟,而面向分布式量子计算、分布式量子传感等进一步量子网络应用,需要采用量子中继技术在远距离量子存储器间构建量子纠缠,在此基础上通过广域量子隐形传态将各个量子信息处理节点连接起来。新研究使得现实量子纠缠网络的距离由几十米提升至几十公里,为后续开展分布式量子计算、分布式量子传感等量子网络应用奠定基础,该研究是国际首个城域多节点量子网络实验。《自然》杂志也在同一期发表了美国哈佛大学Lukin团队的相关实验进展,该团队首次在SiV色心体系实现了双节点远距离纠缠。二者相比,中国科大成果在纠缠效率方面有明显优势,比哈佛大学的研究高两个数量级以上。 ... PC版: 手机版:

封面图片

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性 纠缠光子是一种即使相隔很远也能保持连接的光粒子,2022 年诺贝尔物理学奖对这方面的实验给予了肯定。IQC研究团队将纠缠与量子点(一种获得2023年诺贝尔化学奖的技术)相结合,旨在优化创建纠缠光子的过程,纠缠光子具有广泛的应用,包括安全通信。提高量子效率和纠缠度IQC和滑铁卢电气与计算机工程系教授Michael Reimer博士说:"量子密钥分发或量子中继器等令人兴奋的应用需要高度纠缠和高效率的结合,这些应用被设想用于将安全量子通信的距离扩展到全球范围或连接远程量子计算机。以前的实验只能测量到近乎完美的纠缠或高效率,但我们是第一个用量子点同时达到这两个要求的人。"纠缠光子源嵌入半导体纳米线的铟基量子点(左),以及如何从纳米线中有效提取纠缠光子的可视化图。资料来源:滑铁卢大学通过将半导体量子点嵌入纳米线,研究人员创造出了一种能产生近乎完美的纠缠光子的光源,其效率是以前工作的65倍。这种新光源是与位于渥太华的加拿大国家研究理事会合作开发的,可以用激光激发,根据指令产生纠缠对。研究人员随后使用荷兰 Single Quantum 公司提供的高分辨率单光子探测器来提高纠缠程度。历史上,量子点系统一直存在一个名为"精细结构分裂"的问题,它会导致纠缠态随时间发生振荡。这意味着使用慢速检测系统进行测量将无法测量纠缠状态,IQC 和滑铁卢电气与计算机工程系博士生 Matteo Pennacchietti 说。"我们将量子点与非常快速和精确的检测系统相结合,克服了这一难题。我们基本上可以在振荡过程中的每一点上获取纠缠态的时间戳,这就是我们拥有完美纠缠的地方。"为了展示未来的通信应用,Reimer 和 Pennacchietti 与 Norbert Lütkenhaus 博士和 Thomas Jennewein 博士(两人均为 IQC 教师和滑铁卢物理与天文学系教授)及其团队合作。利用新的量子点纠缠源,研究人员模拟了一种称为量子密钥分发的安全通信方法,证明量子点源在未来的安全量子通信中大有可为。编译自:ScitechDaily ... PC版: 手机版:

封面图片

创新性研究利用悬浮光学机械观察较大物体的量子现象

创新性研究利用悬浮光学机械观察较大物体的量子现象 两个被光学捕获的纳米粒子通过光子在镜子之间来回反弹而耦合在一起,图片显示两个纳米粒子(绿色)被光镊/激光束(红色)困住,并被放置在两面镜子(白色)之间,形成一个光腔(周期性的蓝色圆球)。纳米粒子(紫色斜箭头)散射的光子被困在空腔中,从而导致两个纳米粒子之间的相互作用(紫色直线)。资料来源:曼彻斯特大学量子物理定律支配着微小尺度上的粒子行为,从而产生了量子纠缠等现象,纠缠粒子的特性以经典物理学无法解释的方式密不可分地联系在一起。较大物体中的量子现象量子物理学研究有助于我们填补物理学知识的空白,并能让我们更全面地了解现实,但量子系统运行的微小尺度会使它们难以观测和研究。在过去的一个世纪里,物理学家成功地在越来越大的物体中观测到了量子现象,从电子等亚原子粒子到包含成千上万原子的分子。最近,悬浮光机械学领域涉及在真空中控制高质微米级物体,其目的是通过测试比原子和分子重几个数量级的物体中量子现象的有效性,进一步推动这一领域的发展。然而,随着物体质量和尺寸的增加,产生微妙量子特征(如纠缠)的相互作用会被环境所遗忘,从而导致我们观察到的经典行为。克服环境噪声但现在,曼彻斯特大学量子工程实验室主任 Jayadev Vijayan 博士与苏黎世联邦理工学院的科学家以及因斯布鲁克大学的理论家共同领导的团队,在苏黎世联邦理工学院进行的一项实验中确立了克服这一问题的新方法,并发表在《自然-物理》杂志上。Vijayan博士说:"要在更大尺度上观测量子现象并揭示经典-量子转换,就必须在环境噪声的影响下保留量子特征。可以想象,要做到这一点有两种方法:一是抑制噪声,二是增强量子特征。我们的研究展示了通过第二种方法应对挑战的方法。我们的研究表明,两个光学捕获的 0.1 微米大小的玻璃颗粒之间的纠缠所需的相互作用可以放大几个数量级,以克服环境损失。"科学家们将粒子放在两面高反射镜之间,形成一个光腔。这样,每个粒子散射的光子在离开空腔之前会在镜子之间反弹数千次,从而大大提高了与另一个粒子发生相互作用的几率。苏黎世联邦理工学院的论文共同负责人约翰内斯-皮奥特罗斯基(Johannes Piotrowski)补充说:"值得注意的是,由于光学相互作用是由空腔介导的,其强度不会随距离衰减,这意味着我们可以将微米级粒子耦合到几毫米的范围内。研究人员还展示了通过改变激光频率和粒子在腔体内的位置来精细调整或控制相互作用强度的非凡能力。实际应用和未来方向这些发现是对基础物理学理解的重大飞跃,同时也为实际应用带来了希望,特别是可用于环境监测和离线导航的传感器技术。维也纳技术大学的合作者卡洛斯-冈萨雷斯-巴列斯特罗博士说:"悬浮机械传感器的关键优势在于,与其他使用传感技术的量子系统相比,它们的质量很高。大质量使其非常适合探测引力和加速度,从而提高灵敏度。因此,量子传感器可用于各个领域的许多不同应用,如监测极地冰层用于气候研究,测量加速度用于导航目的等。"皮奥特罗斯基补充说:"能在这个相对较新的平台上工作,并测试我们能在多大程度上将其推入量子体系,这令人兴奋。"现在,研究团队将把新功能与成熟的量子冷却技术相结合,大步迈向量子纠缠的验证。如果成功,实现悬浮纳米粒子和微粒子的纠缠将缩小量子世界与日常经典力学之间的差距。在曼彻斯特大学光子科学研究所和电气与电子工程系,Jayadev Vijayan 博士的团队将继续研究悬浮光学机械学,利用多个纳米粒子之间的相互作用,将其应用于量子传感领域。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人