踩入进化陷阱:明明小尺寸可以活得更好 生物却偏偏倾向于变大

踩入进化陷阱:明明小尺寸可以活得更好 生物却偏偏倾向于变大 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 各种细胞 Wikimedia Commons不仅如此,小尺寸的生物还具有难以置信的适应弹性,可以在环境变化中生存下来,所以它们中的一些成员相当古老。而作为对比,大尺寸的生物往往需要更长时间生长和成熟,因此它们的繁殖速度更慢,这降低了进化的速度,同时也失去了适应弹性。所以,环境变化最先倒下的都是是大型生物。比如6600万年前,小行星撞击导致恐龙灭绝的事件中,陆地上任何比家猫更大动物都灭绝了。事实上,即便没有大灾难降临,大尺寸的生物似乎也不太能够应对物理和生物环境的长期发展,基本没有什么大型生物可以长期演化下去的,通常在较短时间内就会走向灭绝。那么,有趣的问题是,既然进化对小生物更有利,那生物为什么还会变大呢?大部分生物确实都在想方设法地挑战物理极限,让自己变得更大,事实上这就像是一个“陷阱”一样,且生物对此无法自拔。图:这个被称为达尔文兰花,它与授粉飞蛾都高度特化了,除了彼此无法再适应其它生物为什么小生物更具适应性?我们前面提到过,体积太大会导致进化速度慢和丧失适应弹性从而灭绝,除了因为成熟的时间变长了之外,还有一个根本原因,就是大尺寸的生物体需要更多的专业化来维持。例如,较大的脊椎动物需要不成比例的厚骨骼和大肌肉,如果鼩鼱等比例长到大象大小的话,那么它们的骨骼也将无法支撑身体。这种专业化在生物学上有一个专业的名词来形容叫做特化。如果你了解这个名词的话,你就会知道高度特化的物种有多脆弱了。高度特化的特征意味着它只对特定的环境有效,而且越是高度的特化,它的机动性就越差,越难以发生改变。大象其实即便没有人类,也相当容易灭绝 Ikiwaner这就是为什么几乎所有大型生物都会走向灭绝,而不是继续演化的原因,因为随着体积变大,它们将用完所有“进化潜能”,直到无法做出任何改变去应对最简单的变化。小型生物正好相反,它们不需要太专业化,同时可以快速完成繁殖使命,积累基因突变来适应变化。更重要的是,因为尺寸小,它们可以更精细地分配资源,将更多物种和个体容纳在同一栖息地空间中,确保多样化不易完全灭绝。昆虫是资源分配的大师,所以单个昆虫类群的物种数量就超过了所有其他动物类群的总和,这使得它们可以称得上是地球上最成功的动物类群。另外,小尺寸生物因为不需要对自身生物体的维持做出太多努力,所以它们对环境的适应是我们远超想象的。那些较小的生命体,如一些古细菌可以在200°C 温度的深海喷口生存,水熊虫这样的节肢动物也可以忍受高辐射的环境。事实上,一些人认为微生物可以在陨石内完成星际旅行并存活下来,所以哪天你看到新闻说,太阳系其它地方的生命有着与地球生命共同的起源,不要觉得意外。既然小尺寸生命如此强大,那么为什么生物还会选择变大?大体积的进化陷阱古生物学家爱德华·科普(Edward Cope)曾提出,所有谱系中的个体在进化过程中都倾向于体型增大。虽然有时候会存在一些例外,但生物在进化过程中确实倾向于变大,这点是毫无疑问的,那些倾向于变小的生物,通常是因为资源的限制,而且这种限制不至于导致其灭绝。之所以生物倾向于变大,自然是因为越大越容易给它们带来更多生存和繁殖的机会。对于种群外部来说,较大的体型意味着能够更容易躲避掠食者,捕食猎物,所以大象和鲸鱼除了人类之外几乎没有天敌。对于种群内部来说,较大的体型更能战胜竞争对手,无论是动物,还是植物,还是其它生物类群,更大都意味着相较于同类可以得到更多生存资源。细胞增大后,表面积和体积比值下降 Wikimedia Commons对于个体来说,较大的生物体也往往更擅长保存热量,这是因为随着体积增加表面积与体积的比值会下降。另一方面,这对于有性繁殖而言也是有利的,不仅仅体现在较大体型能在种群竞争中胜出,还有体型更大往往也意味着拥有更多的生殖细胞。生物被“设计”成传递基因的使命,较大的体型无论从哪方面出发,它都对传递基因有利,所以生物倾向于变大,是可以理解的。但就像我们前面提到的,这种有利只是眼前的,而不是长久的,它就像一个陷阱一样。另外,值得一提的是,在变大这件事上,地球的生命花了很长时间才找到方法。单细胞生物的第一个证据可以追溯到大约38亿年前,当时新形成的地球已经冷却到足以让有机生命出现的程度。但是,单个细胞的大小有物理极限值,无论太大、还是太小都会导致细胞崩溃,太大的话营养输送都会出问题,而太小的话它难以自我能量为此。生物想要变大的唯一方法就是合作变成多细胞, 而地球多细胞的出现时间不到10亿年,在地球生命历史的大部分时间里都是以简单的单细胞存在的。古老的藻类化石,图源:S Bengston et al/PLOS Biology同样因为营养输送问题,多细胞生物在变大这件事上其实只有两种选择:一种是细胞合在一起之后彼此摊开,或者彼此连接,这样它们不需要内部运输系统也能维持生物体,古老的多细胞生物就是先找到这种简单的变大方式,所以那些古老的多细胞生物要么是扁平的,要么线状的。不知道何时起,生物找到了另外一种方式让不同的细胞专门从事不同的工作,包括结构支撑、消化食物以及移动氧气和二氧化碳等物质。也正是找到了这种方式,地球生命在变大这条路上变得一发不可收拾,不停尝试各种变大方式。但似乎历史已经说明一切,变大是一条不归路。 ... PC版: 手机版:

相关推荐

封面图片

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识 Anthony Burnett说:“坦率地说,我们对将酵母转化为光养生物(能够利用光能的生物)是多么简单感到震惊。我们所需要做的就是移动一个基因,它们在光照下的生长速度比在黑暗中快2%。没有任何微调或精心的哄骗,它就是有效的。”很容易地为酵母配备这样一个进化上重要的特征,可能对我们理解这种特征是如何起源的意义重大,以及如何将其用于研究生物燃料生产、进化和细胞老化等问题。寻找能量提升这项研究的灵感来自于该小组过去研究多细胞生命进化的工作。该小组去年在《自然》杂志上发表了他们的第一份关于多细胞长期进化实验(MuLTEE)的报告,揭示了他们的单细胞模式生物“雪花酵母”是如何在3000代的时间里进化出多细胞的。在这些进化实验中,出现了多细胞进化的一个主要限制:能量。“氧气很难扩散到组织深处,因此你得到的组织没有能力获得能量。”“我一直在寻找绕过这种基于氧的能量限制的方法。”在不使用氧气的情况下给生物体提供能量的一种方法是通过光。但是从进化的角度来看,将光转化为可用能量的能力是复杂的。例如,允许植物利用光作为能量的分子机制涉及许多基因和蛋白质,这些基因和蛋白质在实验室和自然进化中都很难合成和转移到其他生物体中。幸运的是,植物并不是唯一能将光转化为能量的生物。保持简单生物体利用光的一种更简单的方法是利用视紫红质:一种无需额外的细胞机制就能将光转化为能量的蛋白质。该研究的主要作者Autumn Peterson说:“视紫红质在生命之树上随处可见,显然是生物体在进化过程中相互获取基因而获得的。”这种类型的基因交换被称为水平基因转移,涉及在不密切相关的生物体之间共享遗传信息。水平基因转移可以在短时间内引起看似巨大的进化跳跃,比如细菌如何迅速对某些抗生素产生耐药性。这可能发生在所有的遗传信息中,特别是在视紫红质蛋白中。“在寻找将视紫红质转移到多细胞酵母中的方法的过程中,我们发现我们可以通过将其转移到常规的单细胞酵母中来了解过去在进化过程中发生的视紫红质水平转移。”为了观察他们是否能给单细胞生物配备太阳能视紫红质,研究人员将一种由寄生真菌合成的视紫红质基因添加到普通的面包酵母中。这种特殊的基因被编码为一种视紫红质,这种视紫红质会被插入细胞的液泡中,液泡是细胞的一部分,像线粒体一样,可以将视紫红质等蛋白质产生的化学梯度转化为能量。配备了空泡紫红质,酵母在光照下的生长速度大约快了2%这对进化来说是一个巨大的好处。“在这里,我们有一个单一的基因,我们只是把它跨环境拉到一个以前从未有过光养性的谱系中,它就这样工作了。”“这表明,这种系统真的很容易,至少有时,在一个新的有机体中发挥作用。”这种简单性提供了关键的进化见解,研究人员说明了“视紫红质能够轻易地在如此多的谱系中传播,以及为什么会这样”。由于空泡功能可能有助于细胞衰老,该小组也开始合作研究视紫红质如何能够减少酵母的衰老效应。其他研究人员已经开始使用类似的新型太阳能酵母来研究推进生物生产,这可能标志着生物燃料合成等方面的重大进步。然而,这一团队更热衷于探索这种额外的好处如何影响单细胞酵母向多细胞生物的转变。“我们有这个美丽的简单多细胞模型系统,”Burnett说,他指的是长期运行的多细胞长期进化实验(MuLTEE)。“我们想给它光营养,看看它是如何改变它的进化的。” ... PC版: 手机版:

封面图片

对海洋蜗牛的研究表明:重大的进化转变是逐步发生的

对海洋蜗牛的研究表明:重大的进化转变是逐步发生的 生物学家发现,重大的进化转变是逐步发生的,而不是通过突然的、戏剧性的"怪物"步骤发生的,从而解决了关于飞行、视觉和活产等重大创新是如何进化的长期争论。进化通常是一个循序渐进的过程,一步一步地进行,但偶尔也会产生引人注目的新功能,比如羽毛最终使鸟类能够飞翔。到目前为止,人们还很难理解这些重大的进化变化是如何发生的,部分原因是其中许多变化发生在很久以前,部分原因是很难想象中间阶段。有些人认为,这些变化是大步发生的,大效应的突变产生了"充满希望的怪物";另一些人则认为,创新是逐步形成的,自然选择倾向于中间阶段。活体饲养使 Littorina 蜗牛能够占据和适应各种不同的栖息地。这导致了许多"生态型"的进化,它们的大小、形状和行为各不相同。图片来源:Fredrik Pleijel海洋蜗牛研究的新发现谢菲尔德大学的科学家及其在哥德堡大学和奥地利科技研究所的合作者通过获取和研究最近从产卵转向活产的一组海洋蜗牛的全基因组序列,现在至少能够解决一个例子的争论。这项研究采用了新的方法来发现这种分娩方式的新转变是迅速发生的还是逐渐发生的,研究结果可以用来帮助解释进化过程中的其他戏剧性转变。成螺适应不同的环境状况,体型较大的蜗牛适应于抵御螃蟹的攻击,而体型较小的蜗牛则适应于生活在海浪较强的地区。图片来源:Sophie Webster科学家们能够确定 50 个与繁殖模式完全相关的基因,并估算出它们的起源时间。结果表明,它们是逐渐积累起来的,在过去的不同时期传播开来。这表明,创新可以逐步进化,而不是一步到位。了解进化过程的意义谢菲尔德大学生物科学学院的罗杰-布特林(Roger Butlin)教授说:"了解关键创新的进化起源非常重要,因为它们可以极大地改变进化的进程,比如活体繁殖导致了哺乳动物的多样化,或者羽毛帮助鸟类进化出了飞行。然而,到目前为止,研究这些创新的机会还很少,主要是因为大多数进化变化都发生在很久以前。通过发现和研究海洋蜗牛分娩方式的最新进化转变,我们现在能够理解这些重大变化,并将我们的方法应用于许多其他进化转变"。"Littorina 蜗牛常见于欧洲、英国和美国东海岸的岩石海岸。图片来源:Daria Shipilina他补充说:"我们的研究成果将改变生物学家看待重大进化转变的方式,把重点从进化过程中的大跃进转移到理解小进化步骤的渐进益处上。它们还将帮助其他人剖析其他适应性特征的遗传和历史基础,这在许多生物被迫迅速适应不断变化的世界时非常重要。"研究小组现在计划研究他们发现的基因的功能,以了解导致活产的一系列进化步骤。他们还希望将他们的方法应用于其他类型的适应,包括热耐受性等,因为如果一些物种要在气候变化中生存下来,就必须进化出热耐受性。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

“绿巨人”蜥蜴揭开基因带来进化适应的秘密

“绿巨人”蜥蜴揭开基因带来进化适应的秘密 隆德大学的研究人员正在研究地中海壁蜥的体形、颜色和行为的进化,重点是神经嵴细胞的作用。他们的研究将实地观察与基因分析相结合,找出了导致壁蜥独特性状的基因。这项研究不仅加深了我们对遗传适应机制的理解,还为在其他脊椎动物物种中开展进一步的进化研究奠定了基础。资料来源:哈维尔-阿巴洛斯适应是一种基因变化,可提高在周围环境中的生存能力。它可能会影响颜色、形状和行为。然而,这种基因如何发挥作用的基础一直是个谜。在一项新的研究中,进化生物学家结合实地考察和 DNA 分析,对地中海地区大型、绿色、好斗、性征突出的壁蜥进行了研究。他们发现了一些导致壁蜥拥有绿巨人般外表的基因。"绿巨人"外观背后的所有组织和器官都是由早期胚胎中形成的神经嵴细胞发育而成的。隆德大学进化生物学家娜塔莉-费纳(Nathalie Feiner)说:"我们认为,这些细胞是形状、颜色和行为变化的基础,因此,这些特征是共同进化的。"研究小组对一种常见的壁蜥进行了研究,这种壁蜥具有绿黑相间的颜色、惊人的体型和攻击性行为。具有这种外貌的雄性壁蜥出现在几千年前,靠近今天的罗马,并显示出对其他颜色组合的雄性壁蜥的优势。这导致绿巨人蜥蜴遍布整个意大利。绿巨人蜥蜴。图片来源:哈维尔-阿巴洛斯"我们对神经嵴细胞的了解几乎完全来自小鼠等少数模式生物。我们现在正在绘制蜥蜴胚胎中这种细胞的图谱,以了解绿巨人蜥蜴等现象是如何进化的。"在接下来的几年里,费纳和她的团队将开展更多的实地研究,建立繁殖小组,并进行先进的遗传分析,包括使用 CrispR-Cas9 基因编辑技术。所有这一切的目的都是为了确定神经嵴细胞在颜色、形状和行为的交织进化中扮演着什么样的角色。"我们的研究重点是蜥蜴,但我们的发现可能适用于所有具有神经嵴细胞的动物,这将涵盖约 7 万种脊椎动物。"她说:"虽然我们的工作为进化如何发挥作用提供了一种可能的解释,但它也是许多新研究领域的开端。"编译自/scitechdaily ... PC版: 手机版:

封面图片

量子磁感应:生物学家探寻鸟类导航的进化秘密

量子磁感应:生物学家探寻鸟类导航的进化秘密 黄腹纹霸鹟(Empidonax flaviventris)是一种小型食虫鸟,它不能产生隐花色素 4 蛋白。这种鸟在北美洲繁殖,冬季迁徙到墨西哥南部和中美洲。图片来源:Corinna Langebrake一项新的基因研究表明,鸟类眼睛中的隐花色素 4 蛋白是鸟类磁导航能力的关键,其进化变化凸显了它在适应不同环境中的作用。研究小组在最近发表于英国皇家学会研究期刊《英国皇家学会生物科学院院刊》(Proceedings of the Royal Society B Biological Sciences)上的一篇论文中报告说,这些发现表明隐花色素 4 能够适应不同的环境条件,并支持隐花色素 4 具有传感器蛋白功能的理论。奥尔登堡大学和牛津大学的研究表明,磁感应是基于候鸟视网膜上某些细胞中发生的复杂量子力学过程。这些研究成果于 2021 年发表在科学杂志《自然 》上,为隐花色素 4 就是他们一直在寻找的磁感受器这一假设提供了支持证据。他们证明了隐花色素 4 存在于鸟类的视网膜中。此外,用细菌生产的蛋白质进行的实验和模型计算都表明,隐花色素 4 在对磁场做出反应时表现出可疑的量子效应。之前的研究还发现,知更鸟等候鸟体内的隐花色素 4 对磁场的敏感性要高于鸡和鸽子等留鸟。"因此,隐花色素 4 在知更鸟身上比在鸡和鸽子身上更敏感的原因必须从该蛋白质的DNA序列中找到,"该研究的第一作者兰格布拉克说。"她补充说:"在这些夜间迁徙的鸟类中,该序列可能在进化过程中得到了优化。"在目前的研究中,研究小组首次从进化的角度研究了磁感应。研究人员分析了 363 种鸟类的隐花色素 4 基因。首先,他们比较了该蛋白质与两种相关隐花色素的进化速度,发现用于比较的隐花色素基因序列在所有鸟类物种中都非常相似。它们在进化过程中似乎变化很小。这很可能是由于它们在调节体内时钟方面起着关键作用这种机制对所有鸟类来说都是必不可少的,改变这种机制会产生极其不利的影响。与此相反,隐花色素 4 被证明具有高度可变性。奥尔登堡大学鸟类学教授、鸟类研究所所长利德沃格尔解释说:"这表明,这种蛋白质对于适应特定环境条件非常重要。由此产生的特殊化可能就是磁感应。在其他感官蛋白中也观察到了类似的模式,例如眼睛中的光敏色素。"研究人员随后仔细研究了隐花色素 4 的基因序列在鸟类进化史中的演变过程。他们的分析揭示了一个值得注意的趋势,尤其是在雀形目(Passeriformes)中,这种蛋白质通过快速选择经历了重大优化。研究结果表明,进化过程可能导致隐花色素4在鸣禽中专门用作磁感受器。研究发现,某些鸟类支系中不存在隐花色素 4,如鹦鹉、蜂鸟和霸鹟(Suboscines)。这表明隐花色素 4 在它们的生存中并不起重要作用。然而,鹦鹉和蜂鸟是定居型鸟类,而一些霸鹟鸟类则是长途迁徙型鸟类,它们与欧洲的小型鸣禽一样,白天和晚上都会飞行。这就提出了一个问题:霸鹟是否发展出了一种独立于隐花色素 4 之外的磁感,或者它们是否能够在没有磁感的情况下确定自己的方向?另一种可能是,它们的磁感与知更鸟的磁感具有相同的特性,后者依赖于光线,并且会被无线电波干扰。这位生物学家强调说:"前两种情况将有力地证实隐色4假说,而第三种情况则会给这一理论带来问题。"Liedvogel说:"霸鹟亚目为我们了解隐花色素4的功能和候鸟磁感应的重要性提供了一个天然的工具。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

进化的智慧:远古鲨鱼如何在地球最热的海洋中生存下来

进化的智慧:远古鲨鱼如何在地球最热的海洋中生存下来 研究表明,在过去的一次全球变暖事件中,鲨鱼从海底生物进化成了开阔海洋的掠食者,通过身体变化(如拉长鳍)来适应环境,从而成为更有效率的游泳者。我们今天所熟知的鲨鱼是公海上的顶级掠食者,它们是在数百万年前全球变暖的剧变中,从矮小的海底居民进化而来的。大约 9300 万年前,大量火山熔岩喷涌而出,导致二氧化碳含量飙升,形成了温室气候,将海洋温度推到了最高温。加利福尼亚大学河滨分校(UCR)的研究人员发现,一些鲨鱼用拉长的胸鳍来应对高温。今天(6 月 3 日)发表在《当代生物学》(Current Biology)杂志上的一篇论文记录了这一发现。这项发现是通过对 500 多种鲨鱼活体和化石进行体长和鳍的测量而得出的。UCR生物学博士生、论文第一作者菲利普-斯特恩斯(Phillip Sternes)说:"胸鳍是一种重要的结构,相当于我们人的手臂。我们在查阅大量数据集后发现,随着鲨鱼的栖息地从海底扩展到开阔的海洋,这些鳍的形状也发生了变化。"生活在海洋不同区域的鲨鱼及其各自的胸鳍。图片来源:Phillip Sternes/UCR较长的胸鳍有助于提高鲨鱼运动的效率。"它们的鳍堪比商用飞机的机翼,又长又窄,可以最大限度地减少运动所需的能量,"斯特恩斯说。研究人员还发现,与底栖鲨鱼相比,开阔水域生活的鲨鱼的速度更快,鲨鱼肌肉对温度非常敏感,UCR进化、生态和生物有机体生物学系教授、论文共同作者蒂姆-海勒姆(Tim Higham)介绍说:"这些数据帮助我们在较高温度、尾部运动和游泳速度之间建立了关联。"大多数现存的鲨鱼物种仍然是底栖动物,占据着科学家们所说的海底区域。在大众文化中,这些底栖鲨鱼并不像它们凶猛的开阔水域亲戚那样高大。许多底栖鲨鱼是细长、扁平、中等体型的掠食者。现代鲨鱼中只有约 13% 是快速游泳的开放水域掠食者。研究人员认为,对于它们的远古亲戚来说,呼吸可能已经变得困难。白垩纪时期,随着热量的增加,海底附近的氧气含量可能会下降。现代海面平均温度约为华氏 68 度。在白垩纪,海面温度要高得多,平均达到 83 华氏度左右。白垩纪的高温并非一蹴而就,鲨鱼的进化也是如此。克莱蒙特麦肯纳学院副教授、论文合著者拉尔斯-施密茨(Lars Schmitz)说:"在整个时代,我们的公海表面温度相当高,然后在一两百万年的时间里出现了一个明显的峰值。"全球变暖推动了包括鲨鱼在内的一些动物群体的进化,同时也导致了其他动物的灭绝。由于这些进化变化发生在过去较长的时间范围内,因此很难准确预测鲨鱼或其他海洋生物将如何应对当前的变暖趋势。生物学家看到一些鲨鱼,包括虎鲨和公牛鲨等热带物种,开始游向更北的地方。但目前还不清楚,受到威胁的鲨鱼能否再次适应它们生活的地方,并在迅速升温的环境中生存下来。斯特恩斯说:"现在气温上升得如此之快,据我所知,地质记录中没有任何东西可以用来进行真正的比较。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

考古学家发现16.4亿年前多种形态的真核生物 打破此前的科学假设

考古学家发现16.4亿年前多种形态的真核生物 打破此前的科学假设 加州大学圣塔芭芭拉分校和麦吉尔大学的研究人员在对保存完好的微化石进行的一项新研究中发现,真核生物甚至在 16.4 亿年前就已经进化成了多种多样的形态。这篇发表在《古生物学论文》(Papers in Paleontology)杂志上的论文讲述了真核生物进化历史早期的一系列化石。作者描述了四个新的类群,以及在这些早期真核生物中已经存在的若干高级特征的证据。第一作者、加州大学伯克利分校地球科学系助理研究员莉-安妮-里德曼(Leigh Anne Riedman)解释说:"这些是迄今发现的最古老的真核生物。然而,即使在这些最早的记录中,我们也看到了很多多样性。"真核生物是生命的主要领域之一,包括植物、动物和真菌支系,以及所有其他细胞具有膜核的类群,如原生动物和海藻。许多科学家曾认为,在古近纪晚期,早期真核生物都相当相似,大约在 8 亿年前出现了分化。但是,里德曼和她的合著者却在近两倍于这一时期的岩石中发现了种类繁多、结构复杂的化石。科学家们从以往的研究中得知,真核生物在这一时期已经进化,但对这一时期的多样性却知之甚少。于是,Riedman 在 2019 年年底前往内陆地区。一周之内,她就从一家勘探公司钻探出的八个岩心中收集到了约 430 个样本;这些样本现在存放在北领地地质调查局的图书馆中。这项研究使用的两个岩芯跨越了大约 500 米的地层,即 1.33 亿年,其中有大约 1500 万年的重要沉积。里德曼带着页岩和泥岩回到了美国,这些页岩和泥岩是古代海岸生态系统的残留物,在浅海潮下泥滩和海岸泻湖之间交替出现。她在氢氟酸中浸泡,溶解了基质岩石,浓缩了珍贵的微化石,然后在显微镜下进行分析。"我们希望找到细胞壁具有有趣和不同特征的物种,"里德曼说。她希望这些特征能够揭示这一时期细胞内部发生了什么。不过,由于化石只保留了细胞的外部,要对细胞内部得出任何结论都需要大量的调查。研究人员对这些化石所保存的多样性和复杂性感到惊讶。他们记录了 26 个类群,其中包括 10 个以前未曾描述过的物种。研究小组发现了细胞骨架的间接证据,还发现了板状结构,这表明存在形成板的内部囊泡也许是现代真核细胞中高尔基体的祖先。其他微生物的细胞壁是由束缚纤维构成的,这同样表明存在复杂的细胞骨架。作者还发现了带有微小活门的细胞,这证明了细胞的复杂程度。有些微生物会形成一个囊肿,以等待不利的环境条件。为了钻出来,它们需要在自己的保护壳上蚀出一个开口。制造这扇门是一个专门的过程。"如果要产生一种能溶解细胞壁的酶,就需要非常小心地使用这种酶,"里德曼说。"因此,在真核生物最早的记录之一中,我们看到了一些令人印象深刻的复杂程度。"该领域的许多人都认为这种能力是后来才出现的,而这一组合中的证据进一步强调了即使在这一早期阶段,真核生物的多样性和先进性。"人们一直认为这大约是真核生物出现的时间。现在我们认为,人们只是没有探索更古老的岩石,"合著者、加州大学圣巴巴拉分校地球科学教授苏珊娜-波特(Susannah Porter)说。研究意义这篇论文是研究早期真核生物进化的大型项目的一部分。里德曼和波特想知道早期真核生物是在什么样的环境中进行多样化的,它们为什么会在那里,它们是什么时候迁移到其他地方的,以及它们需要什么样的适应性才能填补这些新的壁龛。这项工作的很大一部分涉及了解真核生物的不同特征是何时首次出现的。例如,作者很想知道这些生物是适应含氧环境还是缺氧环境。前者表明它们有有氧代谢,可能还有线粒体。已发现的每一种现代真核生物都是拥有线粒体的祖先的后代。这表明真核生物很早就获得了线粒体,而且线粒体提供了显著的优势。里德曼和波特目前正在对真核生物的多样性进行新的研究。他们还从西澳大利亚州和明尼苏达州收集了更古老的样本。与此同时,他们在麦吉尔大学的地球化学合作者正在带头研究氧气水平和真核生物的喜好栖息地,这些方面都可以揭示真核生物的进化过程。雷德曼说:"这些结果指示我们去寻找更古老的材料,更古老的真核生物,因为这显然不是地球上真核生物的开端。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人