科学家发现一种普通抗生素的意外健康隐患 病患90天死亡率增加5%

科学家发现一种普通抗生素的意外健康隐患 病患90天死亡率增加5% 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 从 2015 年开始,一种常用处方抗生素哌拉西林/他唑巴坦(品牌名 Zosyn)出现了长达 15 个月的全国性短缺,这为比较接受两种不同类型抗生素治疗的败血症住院患者的死亡率提供了一个独特的机会。哌拉西林/他唑巴坦是一种广谱抗生素,通常用于治疗败血症这种危及生命的感染并发症。如果没有哌拉西林/他唑巴坦,临床医生通常会使用另一种抗生素头孢吡肟,它对常见败血症病原体具有类似的活性,但与哌拉西林/他唑巴坦不同的是,头孢吡肟对肠道厌氧菌的作用很小。医学部肺部与重症医学科医学博士、魏尔重症研究与创新研究所副所长罗伯特-迪克森(Robert Dickson)说:"我们认为这次Zosyn的短缺是一个绝无仅有的机会,我们可以借此询问这种会消耗肠道厌氧菌的抗生素是否会对患者的治疗效果产生影响。"在健康状态下,肠道微生物群主要由厌氧菌组成,它们很少致病。该研究小组之前的研究表明,即使只服用一剂哌拉西林/他唑巴坦,也会杀死肠道中的大部分厌氧菌,而这些厌氧菌在人体新陈代谢、免疫和预防感染方面发挥着重要作用。研究结果和影响Dickson、传染病科的 Rishi Chanderraj 医学博士、肺部和重症医学科的 Michael Sjoding 医学博士以及他们在麻省大学和退伍军人安阿伯分部的多学科团队利用患者记录数据对 7569 名患者的治疗结果进行了研究。研究小组将4523名接受哌拉西林/他唑巴坦治疗的患者与3046名接受头孢吡肟治疗的患者进行了比较。他们发现了明显的差异:使用哌拉西林-他唑巴坦治疗时,90 天死亡率增加了 5%,使用呼吸机的天数增加,器官衰竭的时间延长。Chanderraj 说:"这些都是强效抗生素,全国每家医院每天都在给病人使用。临床医生使用这些抗生素是因为他们试图治疗可能导致病人患病的所有病原体。但我们的研究结果表明,它们对微生物组的影响可能也会对患者的预后产生重要影响。"研究小组之前的研究表明,如果给危重病人服用能消耗肠道厌氧菌的抗生素,病情可能会恶化,而这项研究正是在此基础上进行的。他们在研究动物模型时也发现了类似的效果。"我们之前的研究表明,哌拉西林/他唑巴坦可能存在危害,但这只是一项观察性研究,存在一些局限性,"该研究的资深作者 Sjoding 说。"这就是为什么药物短缺是一个绝佳的机会。它创造了一个近乎完美的自然实验,让我们能够以非常严谨的方式测试这两种药物对患者治疗效果的影响。"最近的一项临床试验将这两种抗生素进行了对比,并比较了两周后的副作用和死亡率。该试验没有发现短期内的任何差异马萨诸塞大学的研究小组在分析中也观察到了这一结果。Chanderraj 说:"在我们的研究中,当我们观察两周的结果时,我们也没有发现差异。但三个月后的差异却非常明显。"新的研究结果表明,使用哌拉西林/他唑巴坦而不是头孢吡肟进行治疗可能会导致每20名脓毒症患者中多一人死亡。"5%的死亡率差异影响巨大,因为败血症是如此常见,"Dickson 说。"每天,成千上万的临床医生都在决定对败血症患者使用哪种药物。"Chanderraj 补充说,医生在开具抗厌氧菌抗生素处方前,应更多地考虑是否有必要使用抗厌氧菌抗生素。"我们需要像看待化疗一样看待抗生素。在正确的情况下,治疗可以挽救生命,但在错误的情况下,治疗可能相当有害。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别 可有效对抗耐药细菌 抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the USA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而 LpxH 蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI: 10.1073/pnas.2317274121编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性 UIC 生物科学副教授尤里-波利卡诺夫(Yury Polikanov)的研究小组与哈佛大学的同事建立了长期研究合作关系,最新发现了这种前景广阔的新型抗生素。UIC 的科学家们提供了对细胞机制和结构的重要见解,帮助哈佛大学的研究人员设计和合成新药。在开发这种新型抗生素的过程中,该研究小组重点研究了许多抗生素是如何与一个共同的细胞目标核糖体相互作用的,以及耐药细菌是如何改造它们的核糖体来保护自己的。波利卡诺夫说:"半数以上的抗生素都是通过干扰病原菌的蛋白质生物合成来抑制其生长的,这是一个由核糖体催化的复杂过程。抗生素与细菌核糖体结合,破坏了这种蛋白质制造过程,导致细菌入侵者死亡。"但是,许多细菌物种进化出了简单的防御措施来抵御这种攻击。其中一种防御方法是,它们在核糖体上添加一个由一个碳原子和三个氢原子组成的甲基,从而干扰抗生素的活性。科学家们推测,这种防御只是细菌在物理上阻塞了药物与核糖体结合的部位,"就像在椅子上放了个大头针",波利卡诺夫说。但他们发现了一个更复杂的状况,他们在最近发表于《自然-化学生物学》(Nature Chemical Biology)的一篇论文中对此进行了描述。研究人员通过使用一种名为 X 射线晶体学的方法,以近乎原子级的精度观察抗药性核糖体,他们发现了两种防御策略。他们发现,甲基不仅能物理阻断结合位点,还能改变核糖体内部"内脏"的形状,进一步破坏抗生素的活性。克服细菌防御随后,波利卡诺夫的实验室利用 X 射线晶体学研究了某些药物是如何规避这种常见的细菌抗药性的,其中包括2021 年由 UIC/哈佛大学合作发表在《自然》杂志上的一种药物。波利卡诺夫说:"通过确定抗生素与两种抗药性核糖体相互作用的实际结构,我们看到了现有结构数据或计算机建模无法预测的东西。看到一次总比听到一千次要好,我们的结构对于设计这种前景广阔的新型抗生素以及了解它如何设法摆脱最常见类型的抗药性非常重要。"新抗生素"Cresomycin"是人工合成的。它经过预先组织,可以避开甲基基团的干扰,强力附着在核糖体上,破坏核糖体的功能。这一过程包括将药物锁定为预先优化的形状,以便与核糖体结合,从而帮助它绕过细菌的防御。它只是与核糖体结合,就好像它并不关心是否存在这种甲基化,如此一来能轻松克服几种最常见的耐药性。Cresomycin的巨大潜力在哈佛大学进行的动物实验中,这种药物能防止金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌等常见致病菌耐多药菌株的感染。基于这些令人鼓舞的结果,下一步将对Cresomycin在人体中的有效性和安全性进行评估。即使在这一早期阶段,这一过程也证明了结构生物学在设计下一代抗生素和其他救命药物中的关键作用。波利卡诺夫说:"如果没有这些结构,我们就无法了解这些药物是如何与经过修饰的耐药性核糖体结合并发挥作用的。我们确定的结构让我们从根本上了解了这些药物逃避耐药性的分子机制。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现超过四分之一的抗生素处方用于对其无效的病症

研究发现超过四分之一的抗生素处方用于对其无效的病症 世界卫生组织(WHO)报告称,滥用和过度使用抗菌药(杀灭细菌、寄生虫、病毒和真菌的药物总称)是产生耐药性病原体的主要原因。密歇根大学(U-M)、西北大学和波士顿医学中心的研究人员在一项新的研究中考察了 2017 年至 2021 年冠状病毒流行高峰期美国医生开抗生素处方的习惯,发现了一些令人担忧的现状。"我们的研究表明,大流行期间不适当抗生素处方的减少只是暂时的,"领衔作者、麻省大学医学院儿科系儿科医生兼医疗保健研究员 Kao-Ping Chua 说。研究人员分析了为 37566581 名美国儿童和成人开具的抗生素处方,其中 51% 为女性。对于每张处方,研究人员都查看了患者在抗生素处方开出当天或开出前三天内的任何新诊断。如果诊断结果不能证明使用抗生素是合理的,就会被归类为不适当。他们的发现很有说服力:在五年的研究期间,全国共开出了 6060 万张抗生素处方。在此期间,抗生素处方不当的病症比例从 25.5% 上升到 27.1%。2019 年 12 月,1.7% 的患者因不当原因使用抗生素。到 2020 年 4 月,这一比例下降到 0.9%,到 2021 年 12 月又恢复到 1.7%。在 2020 年 3 月至 2021 年 12 月期间,在被认为不适合使用抗生素治疗的诊断中,"接触并怀疑接触过 COVID-19"是最常见的两个原因之一。抗生素能杀死细菌,但杀不死 SARS-CoV-2 病毒,因为它是一种病毒。此外,在 2021 年下半年开出的所有不当处方抗生素中,15% 是用于治疗 COVID-19 感染的。在研究期间,28% 到 32% 的抗生素处方没有提供诊断,因此无法判断是否合适。研究人员说,这可能是因为患者是在预约时拿到处方的,而处方并没有记入他们的保险账单,或者是对过去处方的补充。在研究的所有患者中,45% 的人在五年的研究期间至少接受过一次抗生素治疗,13% 的人接受过四次或四次以上的抗生素治疗。Chau说:"我们的研究结果凸显了质量改进措施的持续重要性,这些措施的重点是防止不必要的抗生素处方和抗菌药耐药性,每年有48000名美国人因此丧生。"值得重申的是抗菌药耐药性的危险。并非所有抗生素对所有类型的细菌都有效。因此,当一种细菌对通常可以杀死它的抗生素产生耐药性而导致危及生命的感染时,治疗方案就会受到严重限制,并导致严重的发病率和死亡率。此外,虽然科学家和研究人员一直在寻找,但发现新抗生素的情况很少发生,所以基本上我们只能使用现有的抗生素。遏制抗菌药耐药性的最佳方法是首先预防感染。这包括保持良好的卫生习惯和感染预防与控制程序,以及接种疫苗,直接阻断导致感染的病原体的传播,减少病原体变异为耐药形式的机会。切记严格按照处方服用抗生素,并且一定要服满整个疗程(不要漏服)。不要把抗生素留到下次生病时再用,不要服用为别人开的抗生素。也不要因感染病毒而服用抗生素。这项研究发表在《临床传染病》杂志上。 ... PC版: 手机版:

封面图片

寻找抗生素耐药性的起源:科学家发现18种前所未见的肠道微生物

寻找抗生素耐药性的起源:科学家发现18种前所未见的肠道微生物 预计到 2050 年,抗生素耐药感染将取代癌症成为导致死亡的主要原因,因此了解和限制抗生素耐药细菌的传播成为全世界的当务之急。在最近发表在《美国国家科学院院刊》(PNAS)上的一篇论文中,由马萨诸塞州眼耳科医院首席科学官迈克尔-吉尔摩(Michael S. Gilmore)博士共同领导的一个研究小组描述了他们发现的 18种从未见过的肠球菌类型细菌,这些细菌含有数百个新基因这些发现可能会为抗生素耐药性提供新的线索,因为科学家们正在寻找遏制这些感染的方法。肠球菌是导致耐多药感染的主要原因,尤其是在手术后和住院患者中。这种感染可导致死亡,每年增加的医疗成本超过 300 亿美元。抗生素的重要性"在过去的 75 年中,抗生素挽救了数亿人的生命,并为各类手术的成功做出了巨大贡献,"身兼哈佛医学院传染病研究所所长的吉尔摩说。"然而,在过去的 30 年里,许多最棘手的细菌对抗生素的耐药性越来越强,现在已经达到了危机的程度。我们的发现可能会加深人们对耐药基因如何传播到医院细菌并威胁人类健康的理解"。青霉素等抗生素是在 20 世纪 20 年代被发现的,它们是由土壤中的微生物自然产生的化合物。吉尔摩指出,产生抗生素的微生物在森林地面的腐烂树叶和植物物质中繁衍生息,并赋予森林土壤以气味。昆虫在抗生素耐药性中的作用吉尔摩和布罗德细菌基因组学组主任阿什莉-厄尔(Ashlee Earl)博士组建了一支国际科学家团队,其中包括精英冒险家,在全球偏远角落寻找可能含有肠球菌的粪便、土壤和其他样本。他们收集的标本种类繁多,包括在亚南极水域迁徙的企鹅、乌干达的杜鹃和大象;从巴西到美国的昆虫、双壳类动物、海龟和野生火鸡;蒙古的红隼和秃鹫;澳大利亚的沙袋鼠、天鹅和袋熊;以及欧洲的动物园动物和野生鸟类。研究小组之前的收集工作发现了新类别的细菌毒素,并表明肠球菌大约产生于 4.25 亿年前,当时第一批动物千足虫和蠕虫的祖先出现在陆地上。在四条腿的动物上岸之前,它们可能统治了地球大约 5000 万年。探险科学家史蒂维-安娜-普卢默(Stevie Anna Plummer)与 2016 年尼泊尔探险期间采集的粪便和水样,为全球微生物研究收集样本。图片来源:探险科学家(摄影:保罗-阿莫斯)研究人员最近的采集工作将肠球菌菌株的属种多样性扩大了 25% 以上,同时还发现了更多线索,揭示出昆虫和其他无脊椎动物可能是迄今为止肠球菌细菌(包括天然抗生素耐药菌种)的最大天然来源。厄尔说:"直到最近,我们对肠球菌遗传学的大部分了解都来自那些让我们生病的肠球菌,这是一个问题就像试图了解黑暗却从未见过光明一样。在公民科学家的帮助下,将我们的视野扩展到医院以外的地方,为我们提供了所需的对比,以确定它们是如何让医院里的人生病的,同时也为公众提供了共同拥有解决方案的机会"。吉尔摩认为,昆虫一直在吃腐烂的植物材料,在此过程中自然会给自己摄入一定剂量的抗生素。他假设,数亿年来,这些昆虫肠道中的细菌(如肠球菌)一直接触这些抗生素,并产生了抗药性。20 世纪 40 年代和 50 年代,当人类首次开始服用抗生素时,抗药性已经存在于环境中,并进入了导致人类感染的细菌中。COVID-19大流行揭示了自然界蕴藏着许多人类面临的传染风险。这项研究表明,自然界中的昆虫及其近亲是一个巨大的、未定性的微生物基因库,这些未被发现的微生物基因与那些导致一些抗生素耐药性最强的感染的微生物基因密切相关。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究:亚洲畜牧业抗生素使用量远超欧洲

研究:亚洲畜牧业抗生素使用量远超欧洲 根据“我们的数据世界”发布的最新研究,全球牲畜抗生素的使用在不同地区存在巨大差异,一些亚洲国家每公斤肉使用的抗生素比欧洲国家高出 80 倍。泰国的牲畜抗生素消费量居全球首位,而挪威的使用率最低。 研究发现,全球约 70% 的抗生素用于农场动物而非人类,过度使用抗生素会以多种方式增加动物和人类患病的风险。抗生素通常被用作基本动物福利措施的廉价替代品,例如为动物提供足够的空间、保持其生活环境清洁以及确保谷仓通风良好。集约化养殖的牲畜所消耗的抗生素量是露天养殖的牲畜的4倍。按每公斤使用的抗生素计算,鸡接受的抗生素剂量比羊少七倍,比猪少五倍。牛接受的抗生素剂量也比猪和羊少。 Our World in Data-电报频道- #娟姐新闻:@juanjienews

封面图片

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用 来自韦尔科姆-桑格研究所、奥斯陆大学、剑桥大学及其合作者的研究人员对细菌进行了一次高分辨率基因比较。他们将 700 多份新的血液样本与近 5000 份先前测序过的细菌样本进行了比较,以回答哪些因素会影响耐抗生素大肠杆菌(E. coli)的传播。最近发表在《柳叶刀微生物》(Lancet Microbe)杂志上的这项研究表明,在某些情况下,抗生素使用量的增加确实会导致耐药细菌的增加。不过,研究人员证实,这取决于所使用的广谱抗生素的类型。他们还发现,抗生素耐药基因的成功取决于携带这些基因的细菌的基因构成。认识抗生素耐药性背后的所有主要因素有助于更深入地了解这些细菌是如何传播的,以及是什么阻碍了它们的传播。这样就能更好地为公共卫生干预措施提供信息,利用完整的环境视角来帮助阻止耐药性感染的传播。大肠杆菌是全球血液感染的常见原因。造成这些感染的大肠杆菌通常存在于肠道中,不会造成危害。但是,如果由于免疫系统衰弱而进入血液,就会造成严重的感染,危及生命。对于医疗服务提供者来说,抗生素耐药性,尤其是多重耐药性(MDR),已成为此类感染的一个常见特征。在英国,超过 40% 的大肠杆菌血流感染对医院用于治疗严重感染的一种主要抗生素产生了耐药性。抗生素的使用和抗药性的变化全球大肠杆菌的抗生素耐药性比率各不相同。例如,对一种常用于治疗由大肠杆菌引起的尿路感染的抗生素的耐药率,因国家而异,从 8.4% 到 92.9% 不等。几十年来,抗生素耐药性一直是一个研究课题,以往研究的监测数据一直表明,抗生素的使用与包括英国在内的全球细菌耐药率增加之间存在关联。以往的研究表明,耐药和非耐药大肠杆菌菌株稳定共存,在某些情况下,非耐药细菌更容易成功。然而,由于缺乏无偏见的大规模纵向数据集,以前无法评估基因驱动因素在其中所起的作用。韦尔科姆-桑格研究所、奥斯陆大学及其合作者的这项新研究首次直接比较了挪威和英国两个国家不同大肠杆菌菌株的成功率,并根据全国范围内的抗生素使用水平解释了差异。特定国家的抗生素耐药性通过分析近20年的数据,他们发现抗生素的使用在某些情况下与抗药性的增加有关,这取决于抗生素的种类。其中一类抗生素,即非青霉素类β-内酰胺类抗生素,在英国的平均人均使用量是挪威的三到五倍。这导致了某种具有多重耐药性的大肠杆菌菌株的感染率升高。不过,英国使用抗生素三甲氧苄氨嘧啶的频率也更高,但在比较两国常见的大肠杆菌菌株时,分析并未发现英国的抗药性水平更高。研究发现,MDR 细菌的存活取决于周围环境中存在哪些大肠杆菌菌株。由于这种情况以及一个地区的其他选择性压力,研究人员得出结论,不能认为广泛使用一种抗生素会对在不同国家传播的耐抗生素细菌产生同样的影响。持续研究的重要性科学家们强调,他们的研究结果需要持续的研究努力,以确定大肠杆菌和其他临床重要细菌在各种生态环境中传播的其他驱动因素。要想充分了解抗生素、旅行、食品生产系统和其他因素对一个国家耐药性水平的综合影响,还需要进一步的研究。了解更多能够战胜抗生素耐药性大肠杆菌的菌株,有助于找到阻止其传播的新方法。例如,尝试增加某一地区非抗药性、无害细菌的数量。第一作者之一、挪威奥斯陆大学安娜-波蒂宁(Anna Pöntinen)博士是威康-桑格研究所(Wellcome Sanger Institute)的访问科学家:"我们的大规模研究使我们能够开始回答一些长期存在的问题,即是什么原因导致人群中出现耐多药细菌。这项研究之所以能够完成,是因为英国和挪威对细菌病原体进行了全国性的系统监测。如果没有这样的系统,科学家们利用基因组学的力量所能了解到的东西就会受到很大的限制"。剑桥大学的合著者朱利安-帕克希尔(Julian Parkhill)教授说:"我们的研究表明,抗生素是抗生素耐药大肠杆菌成功的调节因素,而不是唯一原因。我们的研究追踪了几种不同广谱抗生素的影响,结果表明这些抗生素的影响因国家和地区而异。总之,我们的综合基因分析表明,在不了解该环境中细菌菌株的基因构成的情况下,并不总是能够预测抗生素的使用会对一个地区产生怎样的影响。"该研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)和挪威奥斯陆大学的尤卡-科兰德(Jukka Corander)教授说:"耐药性大肠杆菌是一个重大的全球公共卫生问题。长期以来,人们一直认为过度使用抗生素是导致超级细菌增多和传播的原因之一,而我们的研究则强调,广泛存在的大肠杆菌菌株的耐药性水平可能有很大差异。抗生素的使用将是一种选择性压力,而我们的研究表明,这并不是影响这些细菌成功的唯一因素。如果我们要控制超级细菌的传播,继续利用基因组学来详细了解细菌成功的内在驱动因素至关重要"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人