UCLA最新研究:反复练习能显著增强大脑记忆通路

UCLA最新研究:反复练习能显著增强大脑记忆通路 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 为了验证这一点,研究人员让小鼠在两周时间内辨别并回忆一连串气味。然后,研究人员使用一种新颖的定制显微镜跟踪动物在练习任务时的神经活动,这种显微镜可以同时对整个大脑皮层多达73000个神经元的细胞活动进行成像。研究显示,随着小鼠不断重复执行任务,位于次级运动皮层的工作记忆回路发生了转变。小鼠刚开始学习任务时,记忆表征并不稳定。然而,在反复练习任务后,记忆模式开始固化或"水晶化",该研究的通讯作者、加州大学洛杉矶分校医疗中心神经学家佩曼-戈尔沙尼博士介绍说。戈尔沙尼说:"如果想象大脑中的每个神经元都在发出不同的音符,那么大脑在执行任务时产生的旋律每天都在变化,但随着动物不断练习这项任务,旋律会变得越来越精炼和相似。"这些变化让我们了解到,为什么在反复练习之后,表现会变得更加准确和自动。这一见解不仅促进了我们对学习和记忆的理解,而且对解决记忆相关疾病也有意义。编译来源:ScitechDaily参考文献:《挥发性工作记忆表征随着练习而结晶》DOI: 10.1038/s41586-024-07425-w ... PC版: 手机版:

相关推荐

封面图片

Nature最新文章:缺觉再补大脑变傻 临考背书等于没背

Nature最新文章:缺觉再补大脑变傻 临考背书等于没背 该研究的合著者、密歇根大学安娜堡医学院的计算神经科学家Kamran Diba说,随着时间的推移,这些发现可能会导致有针对性的治疗来改善记忆力。同步射击大脑中的神经元很少单独行动;它们是高度相互关联的,经常以一种有节奏或重复的模式一起开火。其中一种模式是锐波波纹,在这种模式中,一大群神经元以极端同步的方式放电,然后另一大群神经元也以同样的方式放电,以此类推,一个接一个地以特定的速度放电。这些涟漪发生在一个叫做海马体的大脑区域,这是记忆形成的关键。这种模式被认为是为了促进与大脑新皮层的交流,而大脑新皮层是储存长期记忆的地方。它们功能的一个线索是,其中一些涟漪是过去事件中发生的大脑活动模式的加速重新运行。例如,当一只动物来到笼子里的某个特定地点时,海马体中一组特定的神经元会齐声放电,形成对该地点的神经表征。之后,这些相同的神经元可能会参与到锐波涟漪中――就好像它们在快速回放那段经历的片段。先前的研究发现,当这些涟漪受到干扰时,小鼠在记忆测试中表现不佳。当涟漪延长时,他们在同一测试中的表现也有所提高,这使得纽约市纽约大学朗格尼健康中心(NYU Langone Health)的系统神经科学家Buzsáki将涟漪称为记忆和学习的“认知生物标志物”。Buzsáki自20世纪80年代以来一直在研究这种爆发。研究人员还注意到,无论是在清醒的时候还是在深度睡眠的时候,锐波涟漪都容易发生,而睡眠中的这种爆发对于将短期知识转化为长期记忆似乎尤为重要。这些涟漪、睡眠和记忆之间的联系是有据可查的,但很少有研究直接操纵睡眠来确定它如何影响这些涟漪,进而影响记忆,Diba说。警钟为了了解睡眠不足是如何影响记忆的,Diba和他的同事们记录了七只小鼠在几周内探索迷宫时的海马体活动。研究人员定期扰乱一些动物的睡眠,让其他动物随心所欲地睡觉。令Diba惊讶的是,被反复唤醒的小鼠与正常睡眠的小鼠相比,有相似甚至更高的锐波涟漪活动水平。但是,涟漪的发射更弱,更没有组织,显示出先前发射模式的重复明显减少。在被剥夺睡眠的动物经过两天的恢复后,先前神经模式的重现有所反弹,但从未达到正常睡眠动物的水平。Frank说,这项研究清楚地表明,“记忆在经历之后会继续被处理,而后经历处理真的很重要”。这可以解释为什么考试前死记硬背或开夜车可能是一种无效的策略。他说,这也给研究人员上了重要的一课:考虑到正常睡眠的小鼠和睡眠不足的小鼠有相似数量的涟漪,锐波涟漪的内容比它的数量更重要。涟漪效应Buzsáki说,这些发现与他的团队在3月6日发表的数据一致,他们发现动物在清醒时发生的尖波涟漪可能有助于选择哪些经历进入长期记忆。他说,有可能睡眠不足的小鼠的紊乱的锐波涟漪不允许它们有效地标记长期记忆的经历。因此,动物可能无法在以后的时间里重放这些经历的神经放电。Buzsáki说,这意味着睡眠中断可以用来阻止记忆进入长期存储,这对那些最近经历过创伤的人来说可能很有用,比如那些患有创伤后应激障碍的人。 ... PC版: 手机版:

封面图片

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种 大鼠(红色)和小鼠(绿色)神经元的混合体在混合大脑中形成了环形气味处理中心什么是混合大脑?听起来像是科幻电影情节中的东西或者是史蒂夫-马丁主演的80年代古怪喜剧但它实际上是两个物种细胞的结合,发育成一个完整的功能性大脑。因此,杂交脑通过创建"合成"神经回路来恢复受损或退化大脑的功能,对于推动再生神经科学的发展非常重要。在哥伦比亚大学欧文医学中心研究人员领导的一项新研究中,大鼠干细胞在发育初期就被引入到小鼠细胞中,从而产生了利用整合的大鼠细胞嗅觉的小鼠大脑。哥伦比亚大学瓦格罗斯内外科医学院遗传学和发育学教授、该研究的共同通讯作者克里斯汀-鲍德温(Kristin Baldwin)说:"我们拥有漂亮的培养皿细胞模型和称为器官组织的三维培养物,它们都有各自的优点。但它们都无法让你确定细胞是否真正发挥了最高水平的功能。这项研究开始向我们展示,我们如何扩大大脑的灵活性,使其能够容纳来自人机界面或移植干细胞的其他类型的输入。"大鼠-小鼠嵌合体的制作示意图 Throesch 等人研究人员将大鼠胚胎干细胞植入小鼠胚泡(受精卵分裂而成的细胞团),然后将胚泡移植到代孕小鼠妈妈的子宫内发育。尽管在进化过程中存在差异(大鼠大脑发育较慢,体积较大),但研究人员观察到,大鼠细胞与小鼠神经元同步生长。在成熟的大鼠-小鼠或嵌合体中,大鼠细胞整合成整个小鼠大脑的神经回路,并与小鼠神经元形成活跃的连接。鲍德温说:"几乎在整个小鼠大脑中都能看到大鼠细胞,这让我们相当惊讶。它告诉我们,插入的障碍很少,这表明许多种小鼠神经元都可以被类似的大鼠神经元取代。"接下来是测试大鼠细胞的功能能力,以及它们是否能取代受损的小鼠神经元。研究人员开发了小鼠模型,这些小鼠的嗅觉神经元(OSNs)在基因上有缺陷或被消融,即被破坏,而嗅觉神经元是检测和传递气味信息的神经元。他们发现,大鼠细胞拯救了小鼠大脑。鲍德温说:"我们在每个小鼠笼子里都藏了一块饼干,结果非常惊讶地发现,它们能通过大鼠神经元找到饼干。"然而,与OSN被破坏的小鼠相比,OSN被基因沉默(即神经元存在,只是不工作)的小鼠找到饼干的成功率较低。这表明,增加替代神经元并非"即插即用"。如果想获得功能性替代神经元,可能需要清空闲置在那里的功能障碍神经元,这可能是某些神经退行性疾病的情况,也可能是自闭症和精神分裂症等神经发育障碍的情况。研究人员在研究中遇到的一个问题是,大鼠细胞随机分布在不同的小鼠体内,这阻碍了他们将研究扩展到其他神经系统。目前,他们正试图找到驱动插入细胞发育成特定细胞类型的方法,这可能会提供更高的精确度。扫清这一障碍将为创造具有灵长类神经元的混合大脑铺平道路,这将帮助我们更接近了解人类疾病。这项研究发表在《细胞》杂志上。 ... PC版: 手机版:

封面图片

神经科学家揭示大脑如何决定记忆内容

神经科学家揭示大脑如何决定记忆内容 最近的研究发现,海马体中的"锐波涟漪"是一种大脑机制,它决定了哪些日常经历会成为永久记忆,闲暇时的显著涟漪会导致睡眠中的记忆巩固。神经科学家在过去几十年中发现,大脑会在当晚的睡眠中将一些日常经历转化为持久记忆。最近的一项研究介绍了一种机制,它能决定哪些记忆足够重要,可以保存在大脑中,直到睡眠将其永久固化。在纽约大学格罗斯曼医学院研究人员的领导下,这项研究围绕着被称为神经元的脑细胞展开,这些神经元通过"发射"或使其正负电荷的平衡发生波动来传输编码记忆的电信号。在一个名为海马体的大脑区域中,大群神经元有节奏地循环发射信号,在几毫秒内产生信号序列,这些信号可以编码复杂的信息。这些向大脑其他部分发出的"呼喊"被称为"尖波涟漪",代表了 15% 的海马神经元近乎同时发射的信号,因其活动被电极捕捉并记录在图表上时所呈现的形状而得名。过去的研究将波纹与睡眠中记忆的形成联系在一起,而最近发表在《科学》杂志上的这项新研究发现,紧接着5到20个尖锐波纹的白天事件在睡眠中会被更多地重放,从而巩固为永久记忆。而很少或没有尖锐波纹的事件则无法形成持久记忆。该研究的资深作者、纽约大学朗贡卫生院神经科学与生理学系比格斯神经科学教授、医学博士 György Buzsáki 说:"我们的研究发现,尖锐波纹是大脑用来'决定'保留和丢弃什么的生理机制。"这项新研究基于一个已知的模式:包括人类在内的哺乳动物会体验世界片刻,然后暂停,再体验一会儿,然后再暂停。研究报告的作者说,在我们关注某件事情之后,大脑计算往往会切换到一种"闲置"的重新评估模式。这种瞬间停顿在一天中都会发生,但最长的空闲期发生在睡眠中。Buzsaki 及其同事之前已经证实,当我们积极探索感官信息或移动时,不会出现锐波纹波,只有在之前或之后的空闲停顿期间才会出现锐波纹波。目前的研究发现,尖锐的波状三角形代表了觉醒后这种停顿期间的自然标记机制,标记的神经元模式会在任务后的睡眠中重新激活。重要的是,我们知道尖锐的波状纹是由海马"位置细胞"按照特定顺序发射的,我们进入的每一个房间和老鼠进入的每一个迷宫臂都是由这种细胞编码的。对于被记住的记忆,同样的细胞会在我们睡觉时高速发射,"每晚回放记录的事件数千次"。这个过程加强了相关细胞之间的联系。在本次研究中,研究小组通过电极跟踪了小鼠连续运行迷宫的过程,这些海马细胞群尽管记录的经历非常相似,但却随着时间的推移而不断变化。这首次揭示了在迷宫运行过程中,涟漪在清醒时暂停,然后在睡眠时重放。当小鼠在每次跑完迷宫后停下来享用含糖食物时,通常会记录到尖锐的波状瘫痪。作者说,小鼠食用奖励后,大脑就会从探索模式切换到闲置模式,从而出现锐波瘫痪。通过使用双面硅探针,研究小组能够在迷宫运行期间同时记录动物海马中的多达 500 个神经元。这反过来又带来了挑战,因为独立记录的神经元越多,数据就会变得异常复杂。为了获得对数据的直观理解、可视化神经元活动并形成假设,研究小组成功地减少了数据的维数,在某种程度上就像把三维图像转换成平面图像一样,而且没有失去数据的完整性。第一作者、布扎基实验室的研究生杨婉楠(Winnie)博士说:"我们努力将外部世界排除在外,研究哺乳动物大脑先天和潜意识中将某些记忆标记为永久记忆的机制。为什么会进化出这样一个系统仍然是个谜,但未来的研究可能会揭示出一些设备或疗法,它们可以调整尖锐的波纹,从而改善记忆,甚至减少对创伤事件的回忆"。编译来源:ScitechDaily参考文献:《海马体锐波涟漪对记忆经验的选择》,作者:Wannan Yang、Chen Sun、Roman Huszár、Thomas Hainmueller、Kirill Kiselev 和 György Buzsáki,2024 年 3 月 28 日,《科学》。DOI: 10.1126/science.adk8261 ... PC版: 手机版:

封面图片

反思大脑设计:人类神经元的独特布线挑战了旧有假设

反思大脑设计:人类神经元的独特布线挑战了旧有假设 新研究发现,与小鼠的循环互动不同,人类新皮质神经元单向交流效率更高。这一发现可能会通过模仿人类大脑的连通性来促进人工神经网络的发展。记录多达十个神经元活动的多补丁实验装置。图片来源:Charité | 彭扬帆新皮质是人类智力的关键结构,厚度不足五毫米。在大脑的最外层,200 亿个神经元处理着无数的感官知觉,规划着行动,并构成了我们意识的基础。这些神经元是如何处理所有这些复杂信息的呢?这在很大程度上取决于它们之间的"连接"方式。夏里特神经生理学研究所所长约尔格-盖格(Jörg Geiger)教授解释说:"我们以前对新皮层神经结构的理解主要基于小鼠等动物模型的研究结果。在这些模型中,相邻的神经元经常像对话一样相互交流。一个神经元向另一个神经元发出信号,然后另一个神经元再向它发出信号。这意味着信息经常以循环往复的方式流动"。带有机器人机械手的多通道装置,可在两轮实验之间自动冲洗玻璃移液管。图片来源:Charité | 彭扬帆人类的新皮质比小鼠的新皮质更厚、更复杂。尽管如此,研究人员之前一直假设部分原因是缺乏数据它遵循相同的基本连接原则。盖革领导的夏里特研究小组现在利用极其罕见的组织样本和最先进的技术证明了事实并非如此。在这项研究中,研究人员检查了23名在夏里特接受神经外科手术治疗耐药性癫痫患者的脑组织。在手术过程中,医学上有必要切除脑组织,以便观察其下的病变结构。患者同意将这些组织用于研究目的。神经元的旋转重建。图片来源:Charité | Sabine Grosser为了能够观察人类新皮层最外层相邻神经元之间的信号流,研究小组开发出了一种改进版的"multipatch"技术。这样,研究人员就能同时监听多达十个神经元之间的通信。因此,他们能够在细胞停止体外活动前的短时间内进行必要数量的测量,以绘制网络图。他们分析了近 1170 个神经元之间的通信渠道,以及约 7200 个可能的连接。他们发现,只有一小部分神经元之间进行了相互对话。"人类的信息往往是单向流动的。它很少直接或通过循环返回起点,"该论文的第一作者彭扬帆博士解释说。他曾在神经生理学研究所从事这项研究,目前在夏里特神经学系和神经科学研究中心工作。研究小组根据人类网络结构的基本原理设计了一种计算机模拟,以证明这种前向信号流在处理数据方面的优势。来自多配接装置的微量移液管接近单个神经元。图片来源:Charité | Franz Mittermaier研究人员给人工神经网络布置了一项典型的机器学习任务:从口语数字录音中识别出正确的数字。在这项语音识别任务中,模仿人类结构的网络模型比以小鼠为模型的网络模型获得了更多的正确响应。它的效率也更高,同样的成绩在小鼠模型中需要相当于 380 个神经元,而在人类模型中只需要 150 个神经元。"我们在人类身上看到的定向网络结构更强大,也更节省资源,因为更多独立的神经元可以同时处理不同的任务,"彭解释道。"这意味着局部网络可以存储更多信息。目前还不清楚我们在颞叶皮层最外层的发现是否会扩展到其他皮层区域,也不清楚这些发现能在多大程度上解释人类独特的认知能力。"过去,人工智能开发人员在设计人工神经网络时会从生物模型中寻找灵感,但也会独立于生物模型来优化算法。盖格说:"许多人工神经网络已经使用了某种形式的前向连接,因为它能为某些任务带来更好的结果。人脑也显示出类似的网络原理,这令人着迷。这些对人类新皮质中具有成本效益的信息处理的洞察,可以为完善人工智能网络提供更多灵感"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现脊髓神经机制带来的惊人记忆能力

科学家发现脊髓神经机制带来的惊人记忆能力 日本理化学研究所脑科学中心的竹冈绫(Aya Takeoka)及其团队确定了脊髓中独立于大脑促进运动学习的神经通路。他们的研究结果发表在4月11日的《科学》(Science)杂志上,研究人员发现了两组关键的脊髓神经元,一组是新的适应性学习所必需的,另一组则是学习后回忆适应性的神经元。这些发现可以帮助科学家开发出帮助脊髓损伤后运动恢复的方法。科学家们早就知道,即使没有大脑,脊髓的运动输出也可以通过练习进行调整。这一点在无头昆虫身上得到了最显著的体现,它们的腿仍然可以通过训练来避开外界的提示。到目前为止,还没有人搞清楚这是如何做到的,如果不了解这一点,这种现象就只能是一个怪异的事实。正如武冈解释的那样:"如果我们想了解健康人运动自动性的基础,并利用这些知识改善脊髓损伤后的恢复,那么深入了解其潜在机制是至关重要的。在这项研究中,将肢体位置与不愉快经历联系起来的脊髓仅在 10 分钟后就学会了调整肢体位置,并在第二天保留了记忆。而随机接受不愉快经历的脊髓则不会学习。资料来源:理化学研究所在深入研究神经回路之前,研究人员首先开发了一种实验装置,使他们能够在没有大脑输入的情况下研究小鼠脊髓的适应性,包括学习和回忆。每次试验都有一只实验鼠和一只后腿自由悬垂的对照鼠。如果实验鼠的后腿下垂过多,它就会受到电刺激,模仿小鼠想要避免的动作。对照组小鼠在同一时间接受同样的刺激,但与自己的后腿位置无关。即时学习和记忆保持观察仅仅过了 10 分钟,他们就观察到只有实验小鼠进行了运动学习;它们的腿仍然高高抬起,避免了任何电刺激。这一结果表明,脊髓可以将不愉快的感觉与腿部位置联系起来,并调整其运动输出,使腿部避免不愉快的感觉,而这一切都不需要大脑。24 小时后,他们重复了 10 分钟的测试,但将实验小鼠和对照组小鼠颠倒过来。原来的实验小鼠仍然保持着抬腿的姿势,这表明脊髓保留了对过去经历的记忆,从而干扰了新的学习。在脊髓中建立了即时学习和记忆之后,研究小组开始研究使这两种学习和记忆成为可能的神经回路。他们使用了六种类型的转基因小鼠,每种小鼠都有一组不同的脊髓神经元被禁用,并对它们进行了运动学习和学习逆转的测试。他们发现,脊髓顶端的神经元失效后,小鼠后肢无法适应以避免电击,尤其是那些表达Ptf1a基因的神经元。当他们在学习逆转过程中对小鼠进行检查时,发现沉默表达 Ptf1a 的神经元没有任何效果。相反,脊髓底部腹侧的一组表达En1基因的神经元却起了关键作用。当这些神经元在学习回避的第二天被沉默时,脊髓就像从未学习过任何东西一样。研究人员还在第二天通过重复最初的学习条件来评估记忆回忆。他们发现,在野生型小鼠中,后肢比第一天更快稳定地到达回避位置,这表明它们已经记住了。在回忆过程中激发En1神经元可将这一速度提高80%,表明运动回忆能力增强。竹冈说:"这些结果不仅挑战了运动学习和记忆仅局限于大脑回路的普遍观点,而且我们还证明了我们可以操纵脊髓运动记忆,这对旨在改善脊髓损伤后恢复的疗法具有重要意义。" ... PC版: 手机版:

封面图片

研究发现男性和女性大脑在认知能力上存在显著差异

研究发现男性和女性大脑在认知能力上存在显著差异 虽然许多研究都测试了星形胶质细胞受体对行为的影响,但没有一项研究涉及生理性别是否起作用,而且大多数研究只测试了男性。5月24日发表在《细胞报告》(Cell Reports)上的这项研究挑战了长期以来的假设,即星形胶质细胞信号传导对两性具有相似的认知效应。威尔康奈尔医学院费尔家族脑与心智研究所和海伦与罗伯特-阿贝尔阿尔茨海默氏症研究所的Nan和Stephen Swid额颞叶痴呆症研究助理教授、神经科学助理教授Anna G. Orr博士说:"我们的研究发现,以前报道的男性认知效应不能推断到女性身上。"在各种已知存在性别差异的神经系统疾病中,包括神经退行性疾病、精神分裂症、中风和癫痫,都会出现星形胶质细胞受体的变化。然而,人们对促进性别差异的机制仍然知之甚少。男女大脑有何不同?在这项研究中,第一作者、奥尔实验室前研究生萨曼莎-M-梅多斯(Samantha M. Meadows)博士重点研究了mGluR3,它是星形胶质细胞中的主要谷氨酸受体,也是痴呆症的首要改变基因。研究小组利用基因编辑和刺激动物模型中的工程受体来选择性地操纵星形胶质细胞,并研究 mGluR3 和相关受体对学习、记忆以及其他认知和行为结果的影响。研究人员发现,提高星形胶质细胞的mGluR3水平可增强老年女性的记忆力,而降低这些水平则足以损害年轻女性的记忆力,这表明mGluR3可促进女性的记忆回忆。然而,在男性中,降低mGluR3水平会增强记忆力,而提高受体水平则没有影响。Meadows博士说:"有趣的是,这些受体对认知的影响在两性之间并不一致。"这张小鼠海马体的图像显示了星形胶质细胞(绿色)、神经元(红色)和细胞核(蓝色)上的 mGluR3 受体。图片来源:奥尔实验室为了了解这些不同的效应是mGluR3所独有的,还是反映了星形胶质细胞受体信号转导的更广泛特征,Meadows博士与合著者、脑与心智研究所和阿佩尔阿尔茨海默病研究所神经科学研究助理教授Adam L. Orr博士合作,在小鼠执行涉及学习和记忆的任务时选择性地刺激不同的星形胶质细胞受体。令他们惊讶的是,研究小组发现了进一步的证据,表明受体激活会导致记忆增强或受损,这取决于生物性别。亚当-奥尔博士说:"正常的大脑功能似乎需要特定性别的星形胶质细胞信号平衡。"这项研究表明,正在开发用于治疗精神分裂症和焦虑症等疾病的mGluR3调节剂可能需要进一步研究,以评估它们对不同性别的影响。影响星形胶质细胞受体的治疗药物可能会导致性别特异性认知效应,部分原因是星形胶质细胞在男性和女性中的作用不同。实验室正在研究是什么导致了这种不同的影响,以及大脑的其他功能是否也会以性别特异性的方式发生变化。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人