长寿命低碳混凝土将 80% 的水泥替换成煤灰

长寿命低碳混凝土将 80% 的水泥替换成煤灰 Chamila Gunasekara 博士手持低碳混凝土样品迈克尔-昆,皇家墨尔本理工大学燃煤发电站周围存在大量的煤灰。事实上,这样说可能有些轻描淡写在全球范围内,发电站每年产生约 12 亿吨煤灰,而在澳大利亚,煤灰占所有废弃物的近 20%。这是一个惊人的数字,而且可以肯定的是,在可再生能源转型的很长一段时间内,煤灰仍将大量存在。因此,它是一种巨大的潜在材料资源,低碳混凝土制造商已将其用作水泥替代品,通常可替代高达 40% 的水泥。从环保意义上讲,这种做法一举两得,既利用了大量废料,又减少了水泥用量,而水泥本身的碳排放量约占全球碳排放量的 8%。皇家墨尔本理工大学的一个团队一直在与澳大利亚煤灰开发协会和 AGL 洛阳发电厂合作,以更好地利用这一可疑资产,并试图提高煤灰含量,以取代 80% 以上的水泥。为此,研究人员使用了低钙粉煤灰混合物、18% 的熟石灰和 3% 的纳米二氧化硅作为强化剂,然后浇筑了一些混凝土,并开始测试其机械性能。在第 7 天和第 450 天之间,高体积粉煤灰 (HFVA-80) 混凝土的抗压强度从 22 兆帕增加到 71 兆帕。它的抗折强度为 2.7-8.7 兆帕,劈裂拉伸强度为 1.6-5.0 兆帕,弹性模量为 28.9-37.0 GPa。在酸和硫酸盐环境中暴露两年后,它的耐久性超过了普通硅酸盐水泥。项目负责人、皇家墨尔本理工大学工程学院的 Chamila Gunasekara 博士在一份新闻稿中说:"我们添加了纳米添加剂来改变混凝土的化学性质,这样就可以在不影响工程性能的情况下添加更多的粉煤灰。"埃拉林发电站在巨大的灰坝面前相形见绌 澳大利亚灰烬发展协会更妙的是,该团队表示,他们发现这项技术并不需要精细的"粉煤灰",而且似乎对低等级的"塘灰"也同样有效,目前已经用后者制作并测试了结构混凝土梁,并通过了澳大利亚工程性能标准认证。Gunasekara说:"令人兴奋的是,初步结果显示低等级塘灰也具有类似的性能,这有可能为水泥替代品开辟一种全新的、利用率极低的资源。与粉煤灰相比,塘灰由于其不同的特性,在建筑中的利用率很低。""澳大利亚各地的大坝中堆积着数百兆吨的火山灰废料,全球范围内堆积的火山灰废料则更多。这些灰渣池有可能成为环境危害,而能够将这些灰渣重新大规模地用于建筑材料将是一个巨大的胜利"。皇家墨尔本理工大学团队还与北海道大学合作开发了一个试验性计算机建模系统,用于预测这些新型混凝土混合物在一段时间内的性能,该团队希望利用这一软件来分析和优化更多的新型混合物。 ... PC版: 手机版:

相关推荐

封面图片

玻璃废料和垃圾碎屑可制成更好的绿色砖块

玻璃废料和垃圾碎屑可制成更好的绿色砖块 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 首席科学家迪兰-罗伯特副教授(左三)与皇家墨尔本理工大学研究团队的其他成员合影 西默斯-丹尼尔,皇家墨尔本理工大学部分由废弃玻璃和回收废灰制成的砖块已被证明比普通砖块具有更好的隔热性能,同时生产所需的能源也更少。当然,它们还额外使用了原本会被填埋的材料。考虑到这些问题,澳大利亚皇家墨尔本理工大学(RMIT University)的科学家们开始用玻璃和灰烬替代砖块中使用的大部分粘土。这两种材料均由澳大利亚最大的回收公司 Visy 提供。研究中使用的部分固体废灰 西默斯-丹尼尔,皇家墨尔本理工大学这些玻璃碎片以小于 3 毫米的颗粒形式运抵回收设施,由于太小,无法进行分类和回收。灰烬是回收设施在焚烧不可回收物品时产生的,如订书钉、铝和陶瓷碎片,以及某些类型的纸张和塑料。重要的是,玻璃颗粒和草木灰在用于实验砖之前都不需要研磨。这两种材料都有部分助熔作用,可降低混合物中二氧化硅(砂)的熔点。通过调整配方,可以制作出各种颜色的砖块 西默斯-丹尼尔,皇家墨尔本理工大学虽然尝试了多种混合比例,但当玻璃取代至少 15%的粘土,灰烬取代至少 20%的粘土时,效果最好。采用这种配方,砖块的烧制温度最多可降低 20%。此外,由于玻璃和灰烬具有隔热性能,据估计,与传统砖块相比,使用这种砖块建造单层住宅最多可减少 5%的能源费用。更重要的是,这种砖符合澳大利亚的结构、耐久性和环境可持续性标准。首席科学家迪兰-罗伯特(Dilan Robert)副教授说:"我们正专注于扩大生产工艺,以便与墨尔本的砖块制造商合作,促进创新砖块的商业化。"有关这项研究的论文最近发表在《建筑与建材》杂志上。值得一提的是,这并不是我们第一次看到玻璃废料和灰烬被用于更好、更环保的建筑材料中。迪肯大学(Deakin University)和南洋理工大学(Nanyang TechnologicalUniversity)的团队都曾在混凝土中使用过玻璃,而莱斯大学(RiceUniversity)和德雷克塞尔大学(Drexel University)的科学家则生产出了粉煤灰增强混凝土。 ... PC版: 手机版:

封面图片

旧混凝土可以在用于回收钢材的熔炉中回收利用 大大减少碳排放量

旧混凝土可以在用于回收钢材的熔炉中回收利用 大大减少碳排放量 混凝土是世界上使用最多的建筑材料,而制造混凝土是一项特别肮脏的工作仅混凝土生产就排放了全球二氧化碳总量的 8%。遗憾的是,要将混凝土回收再利用,使其可以用于制造新的混凝土结构并不容易。科学家们当然一直在研究如何使混凝土更加环保。这包括改变配方,剔除污染最严重的成分(特别是石灰石),或者设计混凝土,使其在铺设后能从空气中吸收更多的二氧化碳。在这项新研究中,剑桥大学的研究人员调查了如何将废弃混凝土重新转化为熟料(水泥的干燥成分),以便再次使用。这项研究的第一作者 Cyrille Dunant 博士说:"我在以前的工作中就有一个模糊的想法,如果有可能粉碎旧混凝土,取出沙子和石子,加热水泥就能去除水分,然后就能重新形成熟料。液态金属浴将有助于这种化学反应的进行,而用于回收钢材的电弧炉则很有可能。我们必须尝试一下。"电弧炉需要一种"助熔剂"材料(通常是石灰)来净化钢水。这种熔化的岩石物质会捕捉杂质,然后冒泡到表面,形成一层保护层,防止新的纯钢暴露在空气中。工艺结束时,用过的助熔剂会作为废料丢弃。因此,在剑桥方法中,石灰助熔剂被换成了再生水泥浆,它不仅能很好地净化钢水,而且如果将剩下的矿渣在空气中快速冷却,它就会变成新的波特兰水泥。这样制成的混凝土与原来的混凝土性能相似。重要的是,研究小组表示,这种技术不会增加混凝土或钢材生产的主要成本,与通常的生产方法相比,还能显著减少二氧化碳排放量。如果电弧炉由可再生能源提供动力,那么它基本上可以制造出零排放的水泥。这项技术已经在生产几十公斤水泥的熔炉中进行了试验,研究人员说,本月正在进行首次工业规模试验,两小时内将生产约 66 吨水泥。研究人员说,到 2050 年,该工艺的规模可以扩大到生产 10 亿吨"电动水泥"。领导这项研究的朱利安-艾尔伍德教授说:"生产零排放水泥绝对是一个奇迹,但我们还必须减少水泥和混凝土的用量。混凝土既便宜又结实,而且几乎可以在任何地方制造,但我们却用得太多了。我们可以在不降低安全性的前提下大幅减少混凝土的用量,但这需要政治意愿。""剑桥电动水泥"不仅是建筑行业的一次突破,我们还希望它能成为一面旗帜,帮助政府认识到,在实现零排放的道路上,创新的机会远远超出了能源领域。作为商业化的第一步,该工艺已经申请了专利。这项研究发表在《自然》杂志上。研究小组在下面的视频中介绍了这项工作。 ... PC版: 手机版:

封面图片

剑桥大学研究人员开发出一种生产低排放混凝土的突破性方法

剑桥大学研究人员开发出一种生产低排放混凝土的突破性方法 这种方法被研究人员称为"绝对的奇迹",它利用电弧炉(常用于钢材回收)同时回收水泥(混凝土的主要碳密集元素)。混凝土是地球上使用量仅次于水的第二大材料,其排放量约占人为二氧化碳排放总量的 7.5%。如何在满足全球需求的同时减少混凝土的排放,是全球最大的脱碳挑战之一。剑桥大学的研究人员发现,废水泥是石灰助熔剂的有效替代品,石灰助熔剂在钢材回收过程中用于去除杂质,通常最终成为一种被称为炉渣的废品。但用废旧水泥替代石灰后,最终产品是可用于制造新混凝土的再生水泥。剑桥大学的研究人员在《自然》杂志上报道了他们开发的水泥回收方法,这种方法不会给混凝土或钢材的生产增加大量成本,而且由于减少了对石灰助熔剂的需求,大大降低了混凝土和钢材的排放量。零排放的测试和潜力该项目的合作伙伴材料加工研究所(Materials Processing Institute)最近进行的测试表明,可在电弧炉(EAF)中大规模生产再生水泥,这是首次实现这一目标。如果电弧炉由可再生能源驱动,这种方法最终可以生产出零排放的水泥。剑桥大学工程系的朱利安-艾尔伍德教授是这项研究的负责人,他说:"我们与建筑行业的成员就如何减少该行业的排放量举行了一系列研讨会。这些讨论产生了很多好主意,但有一点他们无法或不愿考虑,那就是一个没有水泥的世界。"在英国材料加工研究所的电弧炉中首次生产电水泥的照片。资料来源:材料加工研究所混凝土由沙子、砾石、水和作为粘合剂的水泥制成。虽然水泥在混凝土中所占的比例很小,但却造成了近 90% 的混凝土排放量。水泥是通过一种名为"熟料"的工艺制成的,在这种工艺中,石灰石和其他原材料被粉碎,并在大型窑炉中被加热到约 1450°C 的温度。这一过程将原料转化为水泥,但在石灰石脱碳转化为石灰的过程中会释放出大量的二氧化碳。替代材料的挑战过去十年来,科学家们一直在研究水泥的替代品,并发现混凝土中大约一半的水泥可以用粉煤灰等替代材料代替,但这些替代材料需要被剩余的水泥化学激活才能硬化。Allwood说:"这也是一个数量问题我们没有足够的替代品来满足全球每年约40亿吨的水泥需求。我们已经找到了低悬果实,可以通过精心混合和掺和来帮助我们减少水泥用量,但要想一直实现零排放,我们需要开始跳出固有思维。"第一作者、工程系的 Cyrille Dunant 博士说:"我在以前的工作中就有一个模糊的想法,如果有可能粉碎旧混凝土,取出沙子和石子,加热水泥就能去除水分,然后就能重新形成熟料。液态金属浴将有助于这种化学反应的进行,而用于回收钢材的电弧炉则很有可能。我们必须尝试一下。"在英国材料加工研究所的电弧炉中首次生产电水泥的照片。资料来源:材料加工研究所熟化过程需要热量和正确的氧化物组合,所有这些都存在于废旧水泥中,但需要重新激活。研究人员测试了一系列由拆除废料制成的炉渣,并添加了石灰、氧化铝和二氧化硅。炉渣在材料加工研究所的电弧炉中与钢水一起加工,然后迅速冷却。"我们发现水泥熟料和氧化铁的组合是一种极好的炼钢熔渣,因为它发泡且流动性好,"Dunant 说。"如果平衡得当,炉渣冷却得足够快,最终就能得到活性水泥,而不会增加炼钢工艺的任何成本。"通过这种回收工艺制作的水泥比传统水泥含有更多的氧化铁,但研究人员表示,这对水泥的性能影响不大。剑桥电动水泥工艺的规模一直在迅速扩大,研究人员表示,到 2050 年,他们的年产量将达到 10 亿吨,大约相当于目前水泥年产量的四分之一。"生产零排放水泥绝对是一个奇迹,但我们还必须减少水泥和混凝土的用量,"Allwood 说。"混凝土既便宜又结实,而且几乎可以在任何地方制造,但我们却用得太多了。我们可以在不影响安全的情况下大幅减少混凝土的用量,但这需要政治意愿。剑桥电动水泥不仅是建筑行业的一次突破,我们还希望它能成为一面旗帜,帮助政府认识到,在实现零排放的道路上,创新的机会远远超出了能源领域。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

微小的饮食习惯改变可将碳足迹减少25% 并有望延长寿命

微小的饮食习惯改变可将碳足迹减少25% 并有望延长寿命 新的研究强调了在加拿大饮食中用植物性替代品替代动物蛋白对健康和环境的益处,研究发现,特别是在替代红肉和加工肉类时,预期寿命和碳足迹都有显著提高。不同类型的动物蛋白所带来的益处各不相同,而且在健康结果方面也存在性别差异。麦吉尔大学(McGill University)与伦敦卫生与热带医学学院(London School of Hygiene & Tropical Medicine)合作开展的新研究提供了令人信服的证据,证明用植物蛋白食品部分替代动物蛋白食品可以延长人的寿命并减少温室气体排放。重要的是,该研究还表明,益处取决于所替代的动物蛋白类型。这项发表在《自然食品》上的研究从一项全国营养调查中提取数据,分析了加拿大人的饮食记录。研究模拟了用坚果、种子、豆类、豆腐和强化大豆饮料等植物蛋白食品部分替代(25% 和 50%)红肉和加工肉类或奶制品对营养、健康和气候的综合影响。饮食小改变,碳足迹大影响红肉、加工肉类和乳制品是加拿大与饮食有关的温室气体排放的主要来源,之前的一项研究也证明了这一点。值得注意的是,这项研究发现,如果用植物蛋白食品代替一半的红肉和加工肉类摄入量,那么与饮食相关的碳足迹就会减少 25%。另一方面,乳制品替代品的减少幅度较小,最多只有 5%。第一作者、麦吉尔大学动物科学系应届博士毕业生奥利维亚-奥克莱尔(Olivia Auclair)解释说:"我们的研究表明,人类和地球健康的共同利益并不一定需要全面改变饮食习惯,例如采用限制性饮食模式或完全排除某些食物类别,而是可以通过简单地用植物蛋白食品部分替代红肉和加工肉类来实现。"植物性健康益处的性别差距众所周知,高动物性食品会增加患心脏病、糖尿病和某些癌症的风险。在这项研究中,研究人员估计,如果用植物蛋白食品取代人饮食中一半的红肉和加工肉类,由于慢性病风险降低,人的寿命平均可延长近 9 个月。如果按性别细分,男性通过改变饮食习惯会获得更多益处,预期寿命的增长是女性的两倍。相比之下,用植物蛋白食品部分替代奶制品所带来的预期寿命延长幅度较小,但同时也要付出代价:钙不足率最高增加了14%。麦吉尔大学动物科学系副教授、麦吉尔大学健康中心研究所科学家塞尔吉奥-布尔戈斯(Sergio Burgos)说:"我希望我们的研究结果能帮助消费者做出更健康、更可持续的食品选择,并为加拿大未来的食品政策提供参考。"随着越来越多的人开始追求可持续和注重健康的饮食,这项研究的结果可以作为指导,使人们能够做出既有益于个人健康又有益于地球的明智选择。"在减少红肉和加工肉类消费的同时增加植物性食品的消费,将对健康和环境产生相当大的益处,而且对于加拿大的大多数人来说,这涉及到相对较小的饮食变化,"合著者、伦敦卫生与热带医学学院气候变化与行星健康中心荣誉研究员帕特里夏-尤斯塔奇奥-科伦坡说。编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家将水、水泥、炭黑等混合物变成一种超级电容器

科学家将水、水泥、炭黑等混合物变成一种超级电容器 01房子变电池建造这种“超级电容器”,并不需要什么高精尖的科技材料,甚至非常简单,用的都是生活中最常见的原材料,而且都非常便宜水、水泥和炭黑。我们不常听到的炭黑,也不是什么难以合成的材料。这是一种用于制造汽车轮胎的高导电材料,是不完全燃烧过程中产生的木炭杂质,可以用来制造墨水、颜料、橡胶...将它们混合、凝固后,就可以获得一个储能高,而且几乎不损耗的导电纳米级复合材料。其实原理也很简单,麻省理工学院的科学家发现,当水泥与水混合且静置一段时间后,水泥与水反应时,会产生一些空隙。这时候炭黑派上了用场,将其混入混凝土混合物中后,由于其疏水性,排斥水分,碳会聚集在这些空隙中,自然形成一种类似于树枝状的网络,最后在凝固硬化的水泥中会形成一种线状的结构。这些线状结构像树枝一样,会产生许多大的分支,大的分支又会产生更小的分支,更小的分支则会越来越小地分裂下去。最终致使在看起来极为有限的空间中形成巨大的表面积。要知道,电容器的储能量是和电极的体积相关的,如果把1毫米变成1米,就能提供更多的电力。在极为有限的空间中,形成巨大的表面积这一特性,为接下来的储能上限的研究添加了极大的想象空间。而加入的炭黑则担任了导电线的角色,水泥与水发生反应后这些线状结构就像是连接两个极板的桥梁,使得整个混合物具有了导电性。项目参与者之一的马希奇(Admir Masic)表示,随着混合物的固化,水泥中的水化反应系统地消耗了水分,而这种水化反应主要影响碳纳米颗粒,因为它们具有疏水性。炭黑则会形成一条导电线。最重要的是,只需使用在地球上任何地方都能获得的这些廉价材料,就能轻易复制这一过程。然后,他们将这种材料浸入常规电解质材料中,例如氯化钾,利用薄薄的空间或绝缘层隔开,氯化钾的带电粒子会沉淀在碳丝结构上。其结果是,就会形成一个非常强大的超级电容器,可以存储电能并达到10000次以上的稳定充放电循环。不过严格来说,超级电容器并不等同于电池,而是介于电池和电容之间的一种储能装置。简单来说,电池是将化学能转化为电能的装置,它通过在化学反应中将化学能转化为电子的形式来储存电能。其寿命有限,在能量转化的过程中会有损耗。电容器的工作原理,则是在两个电导板之间积聚电荷,通过电场来储存电能。而电容器储能和放电的过程不涉及化学反应,因此循环寿命很长,其充放电速度要比电池快得多。但因为电容器的能量密度较低,放电速度过快等局限性,限制了电容器的应用场景。而超级电容器,就是介于两者之间的一种特殊电容器,利用电极和电解质之间形成的静电双层来储存电荷,可以存储和释放比普通电容器更多的电能,并且可以比电池更快地充放电。之所以研究这样的超级电容器,省理工学院土木工程教授、这项研究的作者之一的弗朗茨(Franz-Josef Ulm)表示,因为太阳能和风能并不总是可用,迅速建造更多价格合理的储能设备是摆脱化石燃料的必要条件。而且超级电容器不会随着时间而降低储能能力,也不需要使用锂离子电池中那些昂贵、有争议的材料,如钴和锂。由于炭黑很便宜,其成本跟混凝土的成本差不多。极低的成本下,有着相当广阔的落地空间。比如应用在房屋建设中,通过电缆连接屋顶上的太阳能板,使用这种材料制成的地基可以用来储存与房屋一天内使用量相当的太阳能。房子就会变身成为一个巨大的充电宝,随用随储。这个团队的研究还发现,添加的炭黑越多,超级电容器存储的能量就越多,不过混凝土结构强度也会下降,所以可以针对所需混凝土结构的强度不同,来添加炭黑的比例造出不同的混凝土“电池”。不仅如此,在风力发电场中,它可以用于风力涡轮机的底座,这种混凝土还可以用来制造道路,可以在电动汽车经过该路面时为其提供非接触式充电。这就比较有意思了,在经过一系列研究石墨烯、炉子炼超导等大费周章的手段以后,这一次人们需要的,也许仅仅只是一台搅拌机。02仍在起步阶段其实这项技术并非刚刚问世,在2023年,麻省理工的这个团队就在《PNAS Nexus》杂志上发表了“混凝土电池”的文章,并且还做出了小型样品。该团队当时认为,一个家庭的平均每日用电量约为10千瓦时。根据计算,一块尺寸为45立方米(或码)的纳米炭黑掺杂混凝土,也就是一个约3.5米宽的立方体 ,储存一日所需能量绰绰有余。由它造成的房子还能一直存储太阳能发电或者风力发电带来的能量,而且它的特性决定充放电速度比我们现在常用的电池要快得多。只要有需要,无论什么物品,都可以自由使用它储备的电源。理论成立的情况下,他们也开始实操。在测试确定水泥、炭黑和水的最佳比例之后,该团队造出了一些和纽扣电池差不多大小的超级容电器。每个超级电容器可以充电到1伏特,连接其中三个就可以看到这些小东西点亮3伏发光二极管(LED)的能力。证明可行性之后,他们计划从建造一个大约12伏汽车电池大小的版本开始,慢慢增加到45立方米,而且他们还设想,用这种混凝土材料来铺路。借助感应技术,路过的电动汽车就可以边移动边充电。不过截至目前,这项技术仍处于起步阶段。他们目前验证的结论是,炭水泥超级电容器只能存储为10瓦的LED供电30小时的能量。此外,早在2021 年,瑞典查尔姆斯理工大学(Chalmers University of Technology)的一个团队称,已经研究出了可充电混凝土的雏形,与之前的容量相比,储存的电量增加了900%以上。他们的研究人员首先在以水泥为基础的混合物中加入少量的短碳纤维,然后在混合物中嵌入一个金属涂层的碳纤维网,铁为阳极、镍为阴极。和用土豆制作电池类似,这个装置被证明能够进行放电然后再充电。尽管采用新的设计其储能比之前的容量多出10倍。但实验中,该电池平均能量密度为每平方米7瓦时(或每升0.8瓦时),与商业电池相比能量密度很低。根据这项研究的联合作者Emma Zhang的发言,这个装置200平方米的储能仅可以供应一个典型美国家庭每日用电量的8%。显然,麻省理工的研究已经不再需要在混凝土中铺设网状电极,并且性能也比瑞典团队的装置更高。虽然说“混凝土电池”的研究仍处于实验室阶段,但是超级电容器的应用范围已经很广。在我们的日常生活中,像手机、相机、路灯、电动玩具等设备都可以见到超级电容器的身影。举个例子,由于其充放电速度快、重复使用次数多,超级电容器在轨道交通领域被广泛使用。2020年,上海市新增了89辆超级电容公交车,覆盖了中心城区的五条主要线路。这些公交车可以利用乘客上下车的间隙,1分钟的时间就能充满电,并且续航里程达到10-15千米。同样,它也被应用于分布式发电和配电网系统、军事设备、有轨电车等领域。可以预见,当我们攻克超级电容器存电量不足、工作电压较低等挑战后,“混凝土电池”才会落地有望。很多人的“家”,也能变成小型发电站了。 ... PC版: 手机版:

封面图片

石墨烯取代沙子 制造更轻、更坚固的混凝土

石墨烯取代沙子 制造更轻、更坚固的混凝土 尽管石墨烯只是一张只有一个原子厚的碳原子薄片,但它却以无比坚固而著称。因此,这种"神奇材料"被掺入混凝土中也就不足为奇了,通常是为了使混凝土更加坚固耐用。但这通常只是在配方中加入石墨烯,而在新的研究中,莱斯大学的研究小组希望用它完全取代沙子。混凝土由三种主要成分组成:水、砂等骨料以及将其粘合在一起的水泥。按体积计算,砂是最大的成分,而由于现代人类对混凝土的贪得无厌,砂矿的开采量正在不断增加。这一过程不仅具有破坏性,而且还面临着资源枯竭的风险。这项研究来自莱斯大学化学家詹姆斯-图尔(James Tour)的实验室,他的团队多年来一直在使用他们开发的一种名为闪焦耳加热的技术制造石墨烯。从本质上讲,富含碳的基础材料在电流的作用下迅速过热,转化为石墨烯薄片。在这种情况下,基础材料是冶金焦炭,一种从煤炭中提取的燃料。"最初的实验是将冶金焦炭转化为石墨烯,结果得到了一种大小与沙子相似的材料,"该研究的第一作者保罗-阿芬库拉(Paul Advincula)说。"我们决定探索将冶金焦炭衍生的石墨烯用作混凝土中沙子的完全替代品,我们的研究结果表明,它的效果非常好。"节省沙子并不是唯一的好处。与使用普通骨料制成的混凝土相比,这种混凝土的重量减轻了 25%,韧性提高了 32%,峰值应变提高了 33%,抗压强度提高了 21%。但从另一方面看,其杨氏模量降低了 11%,而杨氏模量是衡量材料抗拉伸变形能力的指标。研究小组表示,虽然石墨烯目前过于昂贵,无法使这种方法在商业上实现规模化,但它至少表明,还有其他方法可以采用。这项研究发表在《ACS 应用材料》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人