NASA的Psyche航天器的霍尔效应推进器正散发着蓝色光芒全速前往小行星带

NASA的Psyche航天器的霍尔效应推进器正散发着蓝色光芒全速前往小行星带 这幅艺术家的概念图描绘了美国国家航空航天局(NASA)的"Psyche"号航天器驶向火星和木星之间主小行星带中富含金属的小行星"Psyche"。飞船于2023年10月发射,将于2029年抵达目的地。资料来源:NASA/JPL-Caltech/ASU美国国家航空航天局(NASA)的"Psyche"号航天器通过了六个月的健康检查,随着轨道飞行器向更深的太空飞去,散发着蓝色光芒的未来派电动推进器尤为引人瞩目。2023年10月13日,这艘飞船搭载着SpaceX公司的猎鹰重型火箭,从美国宇航局位于佛罗里达州的肯尼迪航天中心发射升空。离开大气层后,"Psyche"号充分利用了火箭的助推力,向火星轨道之外飞去。在接下来的一年里,航天器将处于任务规划人员所说的"全速巡航"模式,此时它的电动推进器将接管工作,推动轨道器飞往小行星带。推进器的工作原理是排出带电的氙原子(或离子),发出耀眼的蓝色光芒,在航天器后面拖曳。它们是 Psyche 号效率极高的太阳能电力推进系统的一部分,该系统由太阳光提供动力。电离氙气产生的推力虽然很微弱,但却能完成任务。即使在全速巡航模式下,推进器施加的压力也和你手握四分之三硬币的感觉差不多。美国国家航空航天局的喷气推进实验室正在对一个电动霍尔推进器进行测试,该推进器与将用于推进美国国家航空航天局的"Psyche"号航天器的推进器完全相同。蓝色光芒是由氙推进剂产生的,氙是一种中性气体,用于汽车前大灯和等离子电视。图片来源:NASA/JPL-Caltech令人印象深刻的速度和目的地轨道飞行器现在距离地球超过1.9亿英里(3亿公里),以每秒23英里(37公里)的速度移动。这大约是每小时 84000 英里(135000 公里)。随着时间的推移,在没有大气阻力减速的情况下,Psyche 将加速到 124000 英里/小时(200000 公里/小时)。该航天器将于 2029 年抵达富含金属的小行星 Psyche,并在轨道上进行约两年的观测。它收集到的数据将帮助科学家更好地了解包括地球在内的具有金属内核的岩石行星的形成过程。科学家有证据表明,这颗最宽处约 173 英里(280 公里)的小行星可能是行星小体的部分核心,即早期行星的组成部分。系统检查和科学仪器飞行小组利用"Psyche"号进入太空的头 100 天对所有航天器系统进行了全面检查。所有的工程系统都在按照预期运行,三台科学仪器也一直在顺利运行。磁强计运行良好,能够探测到来自太阳的带电粒子爆发,伽马射线和中子光谱仪也是如此。今年 12 月,成像仪器上的双摄像头拍摄到了第一批图像。美国国家航空航天局南加州喷气推进实验室的"Psyche"项目经理亨利-斯通(Henry Stone)说:"在此之前,我们一直在启动和检查完成任务所需的各种设备,我们可以报告说,它们工作得非常好。现在我们已经上路,期待着即将到来的近距离飞越火星"。这幅图描述了美国国家航空航天局的"Psyche"号航天器在前往小行星"Psyche"的过程中所遵循的路径。图中标注了主要任务的关键里程碑,包括 2026 年 5 月的火星重力辅助。图片来源:NASA/JPL-Caltech令人兴奋的未来邂逅这是因为飞船的运行轨迹将使它在 2026 年春季返回火星。飞船在驶向火星时将关闭推进器,利用火星引力将自己弹射出去。从那里开始,推进器将恢复到全速巡航模式。下一站:小行星 Psyche。与此同时,航天器上的深空光通信技术演示将继续测试其能力。今年 4 月,该实验以每秒 267 兆比特的速度从超过 1.4 亿英里(2.26 亿公里)外向地球上的下行链路站传输测试数据,比特率与宽带互联网下载速度相当,这已经超出了人们的预期。团队的管理和贡献Psyche任务由亚利桑那州立大学领导。位于帕萨迪纳的加州理工学院下属的JPL 负责飞行任务的总体管理、系统工程、集成和测试以及飞行任务的运行。位于加利福尼亚州帕洛阿尔托的 Maxar Technologies 公司提供了大功率太阳能电力推进航天器底盘。JPL 为 NASA 空间技术任务局的技术示范任务计划和空间运行任务局的空间通信与导航计划管理 DSOC。Psyche是第14次被选中执行美国宇航局发现计划的任务,该计划由位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心管理。位于肯尼迪的美国宇航局发射服务计划负责管理发射服务。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

NASA的"Psyche"探测任务启动了未来型电动霍尔推进器

NASA的"Psyche"探测任务启动了未来型电动霍尔推进器 途中,NASA 利用 Psyche 测试了基于激光的深空通信。该飞行器从近1000万英里外向地球发射了通信激光,这在美国宇航局尚属首次。预计到 2029 年,它将到达它的目标和同名的 Psyche 小行星,并将围绕它运行两年,观察并向 NASA 发回数据。科学家怀疑"Psyche"实际上是一颗行星的初核,也被称为"planetesimal"。对于美国国家航空航天局(NASA)来说,离子推进技术既相对较新,又相当古老。早在美国宇航员首次飞往月球之前,NASA 就已经开始研究这项技术,并于1964 年试射了第一台离子推进器。离子推进器没有活动部件,而是通过激发氙粒子产生推力,将它们推出推进器。离子推进器有很多种,包括 Psyche 所使用的磁霍尔推进器。2018 年,Psyche 的航天器总工程师撰文详细解释了这些推进器与其他离子推进器以及电弧喷射器和微波推进器等其他类型推进器之间的区别。美国国家航空航天局首次使用离子推进器作为航天器的主要推进器是在 1998 年的"深空 1 号"任务中,该任务专门测试"未来星际飞行任务的各种先进技术"。2007 年,"黎明"号成为美国宇航局"首个专门用于科学研究"的使用离子推进器的飞行任务,一直飞到它用于定向推进器的燃料肼耗尽为止。没有了这些燃料,它就无法掉头与美国国家航空航天局(NASA)保持联系。离子推进器的威力还不足以从地球上发射火箭,但随着时间的推移,它们仍然可以达到非常高的速度。目前,美国宇航局称"Psyche"号的速度为每秒23英里,约合每小时84000英里,最终将达到每小时124000英里。像"Psyche"这样的推进器一般都很有用,因为它们没有活动部件,所以经久耐用,而且使用的燃料较少,所以重量较轻,可以用在较小的航天器上。另外,它们打开时的外形看起来很酷。 ... PC版: 手机版:

封面图片

NASA拟用航天器把小行星撞离轨道

NASA拟用航天器把小行星撞离轨道 人类有史以来第一个行星防御任务即将执行。据英国《新科学家》杂志网站20日报道,执行美国国家航空航天局(NASA)的“双小行星重定向测试”(DART)任务的航天器将于9月26日撞击小行星“迪莫弗斯”,以尝试改变其运行轨道。 DART飞船重500公斤,于去年11月24日发射升空,预计将于9月26日抵达其目的地,即780米宽的小行星“迪迪莫斯”,随后撞上160米宽的“迪莫弗斯”,并试图改变其运行的轨道。 在西班牙格拉纳达举行的欧洲行星科学大会上,DART任务科学家、约翰斯·霍普金斯大学的安迪·里夫金表示,“迪迪莫斯”和“迪莫弗斯”都不会对1100万公里外的地球造成任何威胁,但他的团队希望此次试验获得的结果,为他们未来应对潜在致命的太空岩石提供重要参考... 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

#视频 美东时间9月26日晚7时14分,一个航天器将主动撞击一颗地外小行星,不过这是美国国家航空航天局(NASA)的双小行星重定

#视频 美东时间9月26日晚7时14分,一个航天器将主动撞击一颗地外小行星,不过这是美国国家航空航天局(NASA)的双小行星重定向测试(DART)任务的一部分。这颗名为Dimorphos的小行星对地球没有威胁,该任务旨在探究人为撞击将如何改变小行星的运动轨迹,从而在危险来临时保护地球。

封面图片

NASA开发出改变太空探索游戏规则的H71M亚千瓦霍尔效应推进器

NASA开发出改变太空探索游戏规则的H71M亚千瓦霍尔效应推进器 美国航天局的新推进技术增强了小型航天器执行未来行星任务的能力,并延长了现有卫星的运行寿命。通过与商业实体合作,NASA 不仅推进了其技术商业化目标,还支持了美国航天工业的全球领导地位。资料来源:诺斯罗普-格鲁曼公司使用小型航天器的行星科学任务将需要执行具有挑战性的推进机动任务,例如实现行星逃逸速度、轨道捕获等,这些任务所需的速度变化(delta-v)能力远远超过典型的商业需求和当前的先进水平。因此,这些小型航天器任务的第一项使能技术是能够执行这些高 delta-v 机动任务的电力推进系统。该推进系统必须使用低功率(千瓦以下)运行,并具有高推进剂吞吐量(即在其寿命期内使用高总质量推进剂的能力),以获得执行这些机动动作所需的冲力。经过多年的研究和开发,美国国家航空航天局格伦研究中心(GRC)的研究人员创造了一种满足这些需求的小型航天器电力推进系统NASA-H71M 亚千瓦霍尔效应推进器。此外,这种新型推进器的成功商业化将很快提供至少一种这样的解决方案,以实现下一代小型航天器科学任务所需的高达 8 千米/秒的 delta-v。这一技术创举是通过将过去十年中开发的许多先进的大功率太阳能电力推进技术微型化而实现的,这些技术的应用领域包括人类首个环绕月球的空间站"Gateway"的动力和推进元件。左图:格伦研究中心真空设施 8 推力架上的 NASA-H71M 霍尔效应推进器。右图乔纳森-麦基(Jonathan Mackey)博士在关闭测试设施并抽空之前对推力架进行调试。资料来源:美国国家航空航天局使用 NASA-H71M 电动推进技术的小型航天器将能够独立地从低地球轨道(LEO)机动到月球,甚至从地球同步转移轨道(GTO)机动到火星。这种能力尤为突出,因为向低地轨道和地球同步转移轨道的商业发射机会已成为常规,而这些飞行任务的多余发射能力往往被低价出售,用于部署二级航天器。从这些近地轨道出发执行飞行任务的能力可以大大提高月球和火星科学飞行任务的频率并降低其成本。这种推进能力还将扩大二级航天器的覆盖范围,因为二级航天器历来仅限于与主飞行任务发射轨迹一致的科学目标。这项新技术将使次级飞行任务能够大幅偏离主飞行任务的轨道,从而有助于探索更广泛的科学目标。此外,这些次级航天器科学飞行任务在高速飞越遥远天体时通常只有很短的时间来收集数据。更大的推进能力将允许减速并进入行星轨道进行长期科学研究。此外,配备了这种强大推进能力的小型航天器将能更好地管理主要飞行任务发射轨迹的后期变化。对于机载推进能力有限的小型航天器科学飞行任务来说,这种变化往往是最大的风险,因为它们要依靠最初的发射轨道才能到达科学目标。目前在低地球轨道上形成的小型航天器巨型恒星群已使低功率霍尔效应推进器成为当今太空中使用最广泛的电力推进系统。这些系统对推进剂的使用效率非常高,可用于轨道插入、离轨以及多年的避免碰撞和重新定相。然而,由于这些商业电力推进系统的设计注重成本,不可避免地限制了它们的使用寿命,通常只能运行不到几千小时,而且这些系统只能处理小型航天器初始质量的 10%或更少推进剂。相比之下,受益于NASA-H71M电力推进系统技术的行星科学任务可以运行15000个小时,处理的推进剂占小型航天器初始质量的30%以上。这种改变游戏规则的能力远远超出了大多数商业低地轨道飞行任务的需要,其成本溢价使得此类应用的商业化不太可能。因此,美国航天局寻求并继续寻求与开发创新型商业小型航天器飞行任务概念的公司建立伙伴关系,这些概念对推进剂吞吐量的要求异常高。诺斯罗普-格鲁曼公司的 NGHT-1X 工程模型霍尔效应推进器在格伦研究中心 8 号真空设施中运行。NGHT-1X 的设计基于 NASA-H71M 霍尔效应推进器。资料来源:诺斯罗普-格鲁曼公司诺斯罗普-格鲁曼公司(Northrop Grumman)的全资子公司太空物流公司(SpaceLogistics)是即将在商业小型航天器应用中使用美国国家航空航天局许可的电力推进技术的合作伙伴之一。任务扩展舱(MEP)卫星服务飞行器配备了一对诺斯罗普-格鲁曼公司的 NGHT-1X 霍尔效应推进器,其设计以 NASA-H71M 为基础。该小型航天器的推进能力将使其能够到达地球同步轨道(GEO),并安装在一颗大得多的卫星上。一旦安装完毕,MEP 将充当"推进喷气包",将其主航天器的寿命延长至少六年。诺斯罗普-格鲁曼公司目前正在 GRC 的 11 号真空设施中对 NGHT-1X 进行长时间磨损试验 (LDWT),以展示其全寿命运行能力。LDWT 由诺斯罗普-格鲁曼公司通过一项可全额报销的《空间法协议》提供资金。首批 MEP 航天器预计将于 2025 年发射,它们将延长三颗地球同步轨道通信卫星的寿命。与美国工业界合作,寻找具有与美国航天局未来行星科学任务类似的推进要求的小型航天器应用,不仅支持美国工业界保持商业航天系统的全球领先地位,而且为美国航天局创造了新的商业机会,以便在行星任务需要时获得这些重要技术。美国航天局继续使 H71M 电力推进技术成熟化,以扩大美国工业界可利用的数据和文件的范围,从而开发类似的先进和高能力的低功率电力推进装置。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA 宣布成功改变了一颗小行星的运行轨道

NASA 宣布成功改变了一颗小行星的运行轨道 美国国家航空航天局(NASA)周二表示,一个航天器在距离地球数百万英里的地方撞击了一颗无害的小行星,成功地改变其轨道,NASA宣布了其首次此类测试的结果。 美国航天局将双小行星重定向测试("Dart")航天器发射到小行星的轨道上,从而使其偏离轨道。 美国国家航空航天局希望能够偏转任何对地球构成真正威胁的小行星或彗星。 国家航空航天局的管理者,前宇航员和佛罗里达州民主党参议员比尔-纳尔逊说。"我们向世界表明,作为这个星球的捍卫者,NASA是认真的。" 航天局说:Dart是一项防御地球免受潜在小行星或彗星危害的测试。 Dart将Dimorphos小行星的轨道改变了32分钟。格拉兹说,改变轨道周期的最低要求 "实际上只有73秒"。

封面图片

美国国家航空航天局(NASA)的“双小行星重定向测试(DART)”航天器美东时间周一19时14分成功撞击了小行星目标。

美国国家航空航天局(NASA)的“双小行星重定向测试(DART)”航天器美东时间周一19时14分成功撞击了小行星目标。 DART是世界首个行星防御技术演示,也是NASA首次尝试能否通过纯粹的动能改变小行星在太空中的运动轨迹,从而使其偏离轨道,保护地球。此次撞击的目标是名为Didymos的近地小行星系统中的卫星Dimorphos。Dimorphos的直径约160米。 研究团队现在将使用地面望远镜观察Dimorphos,以确认DART的撞击改变了小行星绕Didymos的轨道。研究人员预计,撞击将把Dimorphos的轨道缩短约1%,即大约10分钟;精确测量小行星的偏转程度是全面测试的主要目的之一。 (NASA,路透社)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人