中山大学团队发现编织晶界 研究成果在《自然》杂志发表

中山大学团队发现编织晶界 研究成果在《自然》杂志发表 “做一张更高效、更可靠、更耐用的分离膜,这是我们的出发点。”中山大学化学学院郑治坤教授团队成功制备出高韧性、高弹性、高机械强度的二维晶体薄膜,并报告了一种利用牺牲性小分子结构导向剂导向相邻晶畴形成编织晶界结构的制备方法,有望扩展晶体膜在分离、光电、柔性器件等领域的应用。相关成果近日刊发在《自然》杂志。论文截图。本文图片均由中山大学提供晶界是晶体内部的缺陷结构,通常,天然和合成晶态材料是由多个单晶晶畴连接到一起,其间的大量晶界制约着材料的机械稳定性。这一影响在由单层原子或少数原子层构成的二维晶体中格外严重,一个线性晶界就将导致二维晶体薄膜的断裂。此外,如同木材刚劲则容易折断、柔软则难以承重,二维晶体的机械强度与韧性往往相互制约。在该研究中,团队在制备二维晶体聚合物时加入牺牲性导向试剂,以线性聚合物为“梭”,利用其自发缠绕、穿插的特性,将二维聚合物编织起来,形成编织晶界。待晶界形成,线性聚合物又会随排异的结晶过程自动离开。进一步实验表明,这种全新晶界结构编织晶界连接形成的晶态聚合物膜具有高韧性、高弹性和高机械强度的特点,其抗压性能接近铝合金和黄金。当材料受力断裂时,裂纹不扩展,且不影响裂纹附近膜的机械性能。编织晶界聚合物均孔膜合成示意图。郑治坤教授表示,这为二维晶体材料在柔性器件和分离膜方面的应用奠定了基础。柔性材料可用于生产柔性显示器、柔性电池、柔性传感器等;膜分离技术则已普遍用于化工、环保、生物工程等领域。与常规膜分离相比,全结晶的聚合物膜有望以更高效率分离出更高纯度的物质。郑治坤教授指导博士生杨永航做实验。 ... PC版: 手机版:

相关推荐

封面图片

《自然》杂志(Nature)美国时间 7 月 3 日刊登中山大学附属第七医院何裕隆、张常华教授团队主导的科研成果,揭示了一种 D

《自然》杂志(Nature)美国时间 7 月 3 日刊登中山大学附属第七医院何裕隆、张常华教授团队主导的科研成果,揭示了一种 DNA 修复蛋白(NBS1)蛋白乳酸化修饰在肿瘤化疗耐药中的关键调控作用,对困扰全球医学界的 “百年谜题” 肿瘤如何产生耐药机制研究取得突破。《NBS1 蛋白乳酸化修饰促进 DNA 损伤修复引起肿瘤耐药》揭示了肿瘤细胞如何抵抗化疗产生耐药性,为肿瘤免疫治疗、肿瘤放疗、肿瘤复发等问题研究开辟了新视角。(新华社)

封面图片

石墨烯的新挚友:新研发的UV胶带可轻松转移这种神奇材料

石墨烯的新挚友:新研发的UV胶带可轻松转移这种神奇材料 九州大学和日东电工的研究人员开发出一种胶带,它能在紫外线照射下改变对二维材料的"粘性"。资料来源:九州大学阿戈实验室现在,九州大学的一个研究小组与日本日东电工公司合作开发出了一种胶带,可用于将二维材料粘贴到许多不同的表面上,而且操作简便、易于使用。他们的研究成果发表在 2024 年 2 月 9 日的《自然-电子学》(Nature Electronics)杂志上。"转移二维材料通常是一个非常技术性和复杂的过程;材料很容易撕裂或受到污染,从而大大降低其独特的性能,"领衔作者、九州大学全球创新中心的 Hiroki Ago 教授说。"我们的胶带提供了一种快速、简单的替代方法,并能减少损坏"。九州大学的研究人员发现,使用紫外线胶带而不是聚合物转移石墨烯能更好地保持材料的完整性并减少缺陷。资料来源:九州大学阿戈实验室研究人员首先关注石墨烯。石墨烯由碳原子薄片制成,具有坚韧、柔韧、轻质、高导热性和高导电性等特点。石墨烯一经发现就被誉为"神奇材料",可应用于生物传感、抗癌药物输送、航空和电子设备等领域。"制造石墨烯的主要方法之一是化学气相沉积法,即在铜膜上生长石墨烯。但要发挥正常性能,石墨烯必须与铜分离,并转移到硅等绝缘基底上,"阿戈教授解释说。"要做到这一点,需要在石墨烯上覆盖一层保护性聚合物,然后使用酸等蚀刻溶液去除铜。附着到新基底后,再用溶剂溶解聚合物保护层。这一过程成本高、耗时长,而且可能导致石墨烯表面出现缺陷或留下聚合物的痕迹。"因此,阿戈教授和他的同事旨在提供一种转移石墨烯的替代方法。他们利用人工智能技术开发了一种被称为"紫外线胶带"的特殊聚合物胶带,这种胶带在紫外线照射下会改变对石墨烯的吸引力。新设计的紫外线胶带能够将二维材料(包括石墨烯和过渡金属二卤化物)转移到一系列不同的基底上,包括硅、陶瓷、玻璃和塑料。资料来源:九州大学阿戈实验室在紫外线照射之前,胶带与石墨烯的粘附力很强,可以将其"粘"住。然而,紫外线照射后,原子键发生变化,与石墨烯的粘附力降低了约 10%。紫外线胶带也会变得稍硬,更容易剥离。综合来看,这些变化使得胶带可以从设备基板上剥离,同时留下石墨烯。研究人员还开发出了可以转移另外两种二维材料的胶带:白石墨烯(hBN)和过渡金属二卤化物(TMDs),前者是一种绝缘体,可以在二维材料堆叠时充当保护层,后者则是下一代半导体的理想材料。重要的是,当研究人员仔细观察二维材料转移后的表面时,他们发现与目前使用传统技术转移时相比,二维材料表面更光滑,缺陷更少。在测试这些材料的特性时,他们还发现它们的效率更高。迄今为止,九州大学和日东电工的研究人员已经成功地利用紫外线胶带转移了直径达 10 厘米的石墨烯晶片。对于较小的 UV 胶带,粘贴和剥离可以用手完成。不过,在大规模生产时,机器是非常有用的。资料来源:Nakatani 等人,《自然-电子学》,与目前的转印技术相比,使用紫外线胶带进行转印还具有许多其他优势。由于 UV 胶带可以弯曲,而且转印过程不需要使用塑料溶解溶剂,因此可以使用柔性塑料作为设备的基底,从而扩大了潜在的应用范围。"例如,我们制作了一个塑料装置,利用石墨烯作为太赫兹传感器。与 X 射线一样,太赫兹辐射可以穿过光线无法穿过的物体,但不会对人体造成伤害,"阿戈教授说。"它在医学成像或机场安检方面大有可为。"更重要的是,UV 磁带可以按尺寸裁剪,因此只需传输准确数量的二维材料,从而最大限度地减少浪费,降低成本。不同材料的二维层还可以很容易地以不同的方向相互叠加,使研究人员能够探索叠加材料的新特性。下一步,研究人员的目标是将紫外线胶带的尺寸扩大到制造商所需的规模。目前,可以转移的最大石墨烯晶片直径为 10 厘米。阿戈教授和他的同事们还在努力解决胶带上形成的褶皱和气泡问题,这些褶皱和气泡会造成小缺陷。研究小组还希望提高二维材料的稳定性,以便二维材料能更长时间地附着在紫外线胶带上,并分发给最终用户,如其他科学家。"最终用户只需像贴儿童贴纸一样贴上和撕下紫外线胶带,就能将材料转移到所需的基底上,无需任何培训,"阿戈教授说。"这种简便的方法可以从根本上改变研究风格,加快二维材料的商业开发。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院在将二维材料集成到设备方面取得突破

麻省理工学院在将二维材料集成到设备方面取得突破 这幅艺术家的作品展示了麻省理工学院研究人员开发的一种新型集成平台。通过对表面力进行工程设计,他们只需一个接触和释放步骤,就能将二维材料直接集成到设备中。图片来源:Sampson Wilcox/电子研究实验室提供但是,将二维材料集成到计算机芯片等设备和系统中是众所周知的难题。这些超薄结构可能会受到传统制造技术的破坏,这些技术通常依赖于使用化学品、高温或蚀刻等破坏性工艺。为了克服这一挑战,麻省理工学院和其他大学的研究人员开发出了一种新技术,只需一步就能将二维材料集成到设备中,同时保持材料表面和由此产生的界面原始无缺陷。他们的方法依赖于纳米级的工程表面力,使二维材料可以物理叠加到其他预制设备层上。由于二维材料不会受损,研究人员可以充分利用其独特的光学和电学特性。所开发的平台利用行业兼容的工具集,使这一过程可以扩展。在这里,主要作者彼得-萨特斯韦特(Peter Satterthwaite)使用 MIT.nano 中修改过的配准工具进行图案化配准集成。他们利用这种方法制造出了二维晶体管阵列,与使用传统制造技术制造出的器件相比,实现了新的功能。他们的方法用途广泛,可用于多种材料,可在高性能计算、传感和柔性电子器件等领域广泛应用。释放这些新功能的核心是形成清洁界面的能力,所有物质之间存在的特殊力量(称为范德华力)将这些界面连接在一起。电子工程与计算机科学(EECS)助理教授、电子学研究实验室(RLE)成员 Farnaz Niroui 是介绍这项工作的新论文的资深作者。"范德华积分有一个基本限制,"她解释说,"由于这些作用力取决于材料的内在特性,因此无法轻易调整。因此,有些材料无法仅利用其范德华相互作用来直接相互整合。我们提出了一个解决这一限制的平台,以帮助范德华集成变得更加通用,从而促进具有新功能和改进功能的基于二维材料的设备的开发。"Niroui 与论文第一作者、电子工程与计算机科学研究生 Peter Satterthwaite,电子工程与计算机科学教授、RLE 成员 Jing Kong,以及麻省理工学院、波士顿大学、台湾国立清华大学、台湾国家科学技术委员会和台湾国立成功大学的其他人共同撰写了这篇论文,这项研究最近发表在《自然-电子学》上。纳米级表面力的多样性使研究人员能够将粘合剂基质转移到许多不同的材料上。例如,在这里,通过使用粘合聚合物,他们能够将图案化的石墨烯(一原子厚的碳薄片)从源基底(上图)转移到接收粘合聚合物(下图)上。图片来源:Niroui 小组提供使用传统制造技术制造计算机芯片等复杂系统可能会变得一团糟。通常情况下,像硅这样的硬质材料会被凿成纳米级,然后与金属电极和绝缘层等其他元件连接,形成有源器件。这种加工过程会对材料造成损害。最近,研究人员专注于使用二维材料和一种需要连续物理堆叠的工艺,自下而上地构建设备和系统。在这种方法中,研究人员不是使用化学胶水或高温将脆弱的二维材料粘合到硅等传统表面上,而是利用范德华力将一层二维材料物理集成到设备上。范德华力是存在于所有物质之间的自然吸引力。例如,壁虎的脚会因为范德华力而暂时粘在墙上。虽然所有材料都存在范德华力,但根据材料的不同,范德华力并不总是强大到足以将它们粘在一起。例如,一种名为二硫化钼的流行半导体二维材料会粘在黄金上,但不会通过与二氧化硅等绝缘体表面的物理接触直接转移到该表面上。然而,通过整合半导体层和绝缘层制成的异质结构是电子设备的关键组成部分。以前,实现这种集成的方法是将二维材料粘合到一个中间层(如金)上,然后使用该中间层将二维材料转移到绝缘体上,最后再使用化学品或高温去除中间层。麻省理工学院的研究人员没有使用这种牺牲层,而是将低粘性绝缘体嵌入高粘性基质中。这种粘合基质使二维材料粘附在嵌入的低粘合力表面上,提供了在二维材料和绝缘体之间形成范德华界面所需的力。制作矩阵为了制造电子设备,他们在载体基底上形成金属和绝缘体的混合表面。然后将该表面剥离并翻转,就会看到一个完全光滑的顶面,其中包含所需的器件构件。这种光滑度非常重要,因为表面和二维材料之间的间隙会阻碍范德华相互作用。然后,研究人员在完全洁净的环境中单独制备二维材料,并将其与制备好的器件堆栈直接接触。"一旦混合表面与二维层接触,无需任何高温、溶剂或牺牲层,它就能拾取二维层并将其与表面整合在一起。"萨特斯韦特解释说:"通过这种方式,我们可以实现传统上被禁止的范德华集成,但现在却可以实现,而且只需一步就能形成功能齐全的器件。"这种单步工艺可使二维材料界面保持完全清洁,从而使材料达到其性能的基本极限,而不会受到缺陷或污染的影响。而且,由于二维材料的表面也保持原始状态,研究人员可以对二维材料的表面进行工程设计,以形成与其他元件的特征或连接。例如,他们利用这种技术制造出了 p 型晶体管,而利用二维材料制造这种晶体管通常是具有挑战性的。他们的晶体管在以前的研究基础上有所改进,可以为研究和实现实用电子产品所需的性能提供一个平台。展望未来他们的方法可以大规模地制造更大的装置阵列。粘合基质技术还可用于一系列材料,甚至与其他力量结合使用,以增强这一平台的多功能性。例如,研究人员将石墨烯集成到器件上,利用聚合物基质形成所需的范德华界面。在这种情况下,粘附依靠的是化学作用,而不仅仅是范德华力。未来,研究人员希望以此平台为基础,整合各种二维材料库,在不受加工损伤影响的情况下研究其内在特性,并利用这些卓越功能开发新的设备平台。编译自:ScitechDaily ... PC版: 手机版:

封面图片

人造蜘蛛腺体能像自然界一样纺出可伸缩的蜘蛛丝

人造蜘蛛腺体能像自然界一样纺出可伸缩的蜘蛛丝 通过该装置进行生物纺丝有望实现可扩展的蜘蛛丝生产 芬尼根等人/(CC By 4.0)日本理化学研究所可持续资源科学中心(RIKEN Center for Sustainable Resource Science)和理化学研究所开拓性研究集群(RIKEN Cluster for Pioneering Research)的研究人员采用新方法实现了这一壮举,他们构建了一个人造丝腺体,旨在反映蜘蛛体内发生的物理和化学变化。这并不容易,由于难以复制这些复杂的生物过程,因此制造人造蜘蛛丝极具挑战性。生物聚合物纤维由具有高度重复序列的大型蛋白质组成,这些序列被称为蜘蛛丝。β片是蛛丝纤维中的分子子结构,必须将其排列整齐,才能赋予蛛丝令人印象深刻的特性。除此之外,人造腺体还需要精确的微流体机制,使蛋白质自我组装成丝状纤维,不仅看起来像,而且行为也像真的一样。"在这项研究中,我们试图利用微流体技术来模拟天然蜘蛛丝的生产过程,这涉及到少量流体在狭窄通道中的流动和操控,"理化学研究所领导这项研究的 Keiji Numata 说。"事实上,可以说蜘蛛的丝腺就是一种天然的微流体装置。"这个人造腺体类似于一个不起眼的长方形盒子,上面有沿其长度方向延伸的凹陷通道,它是在为复杂的过程创造适当的环境,使其像自然界一样发挥作用的过程中反复试验的结果。其中一个错误是使用力量推动蛋白质通过微流体系统;它需要负压来拉动脊髓素溶液通过该装置。不过,一旦克服了这一障碍,研究小组就能制造出β片排列整齐的连续丝纤维,从而使这种材料具有类似大自然的特性。研究报告的共同作者、资深科学家阿里-马来(Ali Malay)说:"令人惊讶的是,一旦建立并优化了不同的条件,微流体系统就会变得如此强大。纤维的组装是自发的,速度极快,可重复性极高。重要的是,纤维呈现出天然丝纤维中明显的分层结构。""高度可重复性"是一个关键属性;成功的复制存在可扩展性问题,而由于后勤和生物原因,养殖蜘蛛几乎是不可能的。低成本、高效率地生产蚕丝可以彻底改变破坏环境的纺织业,其生物兼容性使其成为缝合线、人工韧带和结缔组织手术等多种医疗用途的理想候选材料。Numata 说:"理想情况下,我们希望对现实世界产生影响。为此,我们需要扩大纤维生产方法的规模,使其成为一个连续的过程。我们还将利用多项指标评估人造蜘蛛丝的质量,并在此基础上进一步改进。"这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

封面图片

突破性的高柔性传感器装置让科学家离成功在太空种植植物更近了一步

突破性的高柔性传感器装置让科学家离成功在太空种植植物更近了一步 伊利诺伊大学的研究人员发明了可拉伸传感器,这种传感器可以监测植物生长并远程传输数据,克服了最初的挑战,有可能彻底改变地球和太空的农业实践。资料来源:美国国家航空航天局马歇尔太空飞行中心这项研究详细介绍了美国国家航空航天局(NASA)授予刁颖的一项资助的部分早期成果,该资助旨在研究如何利用可穿戴印刷电子设备实现太空农业。她说:"这项工作的动机是宇航员在执行长期任务时需要可持续地种植蔬菜。"团队利用一个地球实验室来开展这个项目,目的是创造一种高度可靠的可拉伸电子设备。"老实说,我们在开始这项工作时认为,这项任务只需要几个月就能完善。然而,我们很快就意识到,我们的聚合物太硬了,"该研究的第一作者、研究生王思清说。"我们不得不重新配制很多成分,使它们更柔软、更有伸缩性,并调整我们的打印方法,控制装置内部微结构的组装,使它们在打印和固化过程中不会形成大晶体。"研究小组找到了一种非常薄的薄膜装置,有助于在组装和打印过程中抑制晶体生长。"在解决了拉伸性和组装问题之后,我们必须解决在高湿度和快速生长条件下使用可穿戴电子设备所带来的问题,"王说。"我们需要可重现的结果,这样在生长实验过程中就不会出现传感器脱落或电子故障。我们最终找到了一种不受苛刻条件影响的无缝电极和接口。"基于可伸缩聚合物和电子器件的自主远程应变传感器"(SPEARS2)是三年艰苦工作的成果,证明了应用科学很少有"尤里卡时刻"。"在我们对植物生长进行精确、非侵入式实时测量的能力方面,这是一项令人兴奋的技术进步。我期待着看到它如何与最新的基因组和细胞过程分析工具相辅相成,"Leakey 说。这项研究关注的是玉米等主要向上生长的植物。不过,研究人员计划推进他们的电子打印方法,以创建一个可以监测向上和向外生长的系统。研究小组表示,他们还在努力提高远程感知和监控化学过程的能力。"我认为可穿戴电子产品研究界忽视植物的时间太长了,"刁颖说。"我们知道,植物在适应气候的过程中承受着巨大的压力,我认为软电子产品可以在促进我们的理解方面发挥更大的作用,这样我们就能确保植物在未来健康、快乐和可持续发展无论是在太空、其他星球还是在地球上。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

日本化学家开发出自带发光特性的自愈材料

日本化学家开发出自带发光特性的自愈材料 理化学研究所 CSRS 研究人员开发的一种突破性自愈合荧光材料为更耐用的有机太阳能电池和更广泛的应用提供了潜力,符合可持续消费和生产的目标。2019 年,理化学研究所 CSRS 的侯兆民及其团队使用稀土金属催化剂成功共聚了乙烯和异丙烯。由此产生的二元共聚物具有显著的损伤自愈特性。这种共聚物的软组分(乙烯和异丙烯的交替单元)与乙烯-乙烯链的硬结晶单元结合在一起,成为物理交联点,形成了纳米相分离结构,这被证明是自愈合的关键。由乙烯、异丙烯和芘乙烯基取代苯乙烯组成的三元共聚物花纹薄膜的荧光和自愈特性。资料来源:理化学研究所在这一成功的基础上,他们在单体中加入了发光单元苯乙烯,然后形成了包括异丙烯和乙烯在内的聚合物。这一过程只需一个步骤,就能合成具有荧光特性的自愈材料。"荧光材料非常有用,可用于有机发光二极管(OLED)、有机场效应晶体管(OFET)和太阳能电池。然而,这些材料的主要问题之一是使用寿命短。我们的新材料有望延长产品的使用寿命并提高可靠性。"还有一个惊喜,事实证明,由此产生的共聚物不仅坚韧,而且还能在没有外部刺激或能量的情况下实现自我修复。它的拉伸强度在 24 小时内完全恢复,与二元共聚物相比,显示出很高的自愈速度。这种材料即使在水、酸性和碱性溶液中也能自我修复,因此可用于各种环境。这种共聚物的网络结构包括由苯乙烯-苯乙烯单元和结晶乙烯-乙烯纳米域形成的物理交联点,以及由交替单元组成的软段,从而促进了自我修复。这种材料还显示出一种附加特性。研究小组通过光刻技术成功地将二维图像转移到了荧光自修复薄膜上。虽然图像在自然光下仍不可见,但在紫外线下却可以辨认,这表明这种薄膜有可能用作信息存储设备。即使在图像的作用下,薄膜仍能保持良好的自愈合和弹性特性。"我们通过一步反应合成的这种材料,使我们能够通过调整单体的成分来控制其光学和机械性能。我们认为,它能为开发在各种实际环境中具有高度自愈能力的新型功能材料做出重大贡献,"侯说。"这项研究符合联合国的可持续发展目标(SDGs),尤其有助于实现"目标12:确保可持续的消费和生产模式"。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人