新技术实现前所未有的月球测绘精度

新技术实现前所未有的月球测绘精度 科学家们开发出了从阴影到形状的增强技术,大大提高了绘制月球表面地图的效率和准确性。这项创新为任务规划人员提供了更详细的地图,特别是对月球南极等具有挑战性的地形。这幅以月球表面的国际天文学联合会(IAU)302号环形山为特色的斜视图是阿波罗10号宇航员于1969年5月拍摄的。图片来源:美国国家航空航天局布朗大学学者本杰明-博特莱特(Benjamin Boatwright)和詹姆斯-海德(James Head)的研究成果于5月28日发表在《行星科学杂志》(Planetary Science Journal)上,介绍了一种名为"从阴影到形状"(shape-from-shading)的绘图技术的改进。该技术用于创建月球地形的详细模型,勾勒出环形山、山脊、斜坡和其他地表危险。通过分析光线照射月球不同表面的方式,研究人员可以从二维图像的合成图中估算出物体或表面的三维形状。 加强月球安全与探索精确的地图可以帮助月球任务规划人员确定安全着陆点和科学兴趣区,使任务操作更加顺利和成功。布朗大学地球、环境与行星科学系博士后研究员、新论文的第一作者博特莱特说:"它能帮助我们更好地了解那里到底有什么。"我们需要了解月球表面光照不足的地形,比如月球南极的阴影区,NASA的阿耳特弥斯(Artemis)任务就瞄准了那里。这将使自主着陆软件能够导航并避开可能危及任务的危险,如大石头和巨砾。因此需要尽可能高分辨率的地表地形图模型,因为细节越多越好。"伊纳不规则赤褐色斑块的现有模型(A、C、D)与研究中更详细、更清晰的阴影形状模型(B、E)的对比。资料来源:B.Boatwright,NASA/戈达德太空飞行中心/梅斯研究中心 简化绘图过程然而,精确地图的绘制过程是劳动密集型的,在涉及复杂的光照条件、不准确的阴影解释和处理地形变化时有其局限性。布朗大学的研究人员对"从阴影看形状"技术的改进主要集中在解决这些问题上。学者们在研究报告中概述了如何利用先进的计算机算法将大部分过程自动化,并显著提高模型的分辨率。研究人员说,新软件为月球科学家提供了工具,使他们能够以更快的速度绘制出包含更多细节的月球表面大图。 月球绘图的先进技术波特莱特说:"从阴影到形状要求你使用的图像彼此完全对齐,这样一张图像中的特征在另一张图像中的位置就完全相同,这样才能建立起这些信息层,但目前的工具还不能让你随便给它一堆图像,它就能吐出一个完美的产品。我们采用了一种图像对齐算法,它能在一张图像中找出特征,并试图在另一张图像中找到相同的特征,然后将它们对齐,这样你就不必坐在那里手动追踪多张图像中的兴趣点,这需要花费大量的时间和脑力。"研究人员还采用了质量控制算法和额外的过滤器来减少对齐过程中的异常值,这些工具可以确保对齐的图像匹配,并移除对齐效果不佳的图像。通过只选择最终可用的图像,这样可以提高质量,并将精度降低到亚米级分辨率。这样的速度还可以检查更大的表面区域,从而提高这些地图的制作水平。 对比与未来应用研究人员将他们绘制的地图与其他现有地形模型进行比较,寻找月球表面特征的差异或误差,以此评估地图的准确性。他们发现,与传统技术生成的地图相比,利用从阴影到形状的改进方法生成的地图更加精确,能显示月球表面地形更微妙的特征和变化。在这项研究中,研究人员主要使用了月球轨道激光高度计和月球勘测轨道相机的数据,这些数据来自美国宇航局月球勘测轨道器上的仪器。科学家们计划使用他们改进的"从阴影到形状"软件(shape-from-shading)制作月球地图,并希望其他人也能在建模工作中使用该软件。这也是他们使用开源算法制作该工具的原因。 对月球探测的影响曾参与阿波罗计划的布朗大学地质科学教授海德说:"这些新的地图产品大大优于我们在阿波罗任务期间的探索规划,它们将极大地改进阿耳特弥斯和机器人任务的任务规划和科学回报。"研究人员希望这一新工具能够提高美国国家航空航天局(NASA)和世界各地航天机构目前对月球科学和探索的兴趣。博特莱特说:"让所有人都能使用这类工具,可以获得大量信息。这是一种平等的科学方式"。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

臭氧层出现前所未有的提前恢复

臭氧层出现前所未有的提前恢复 瑞士的高海拔综合碳观测系统(ICOS)少女峰站是用于测量大气中氯氟烃含量的采样站之一。图片来源:Jungfrau.ch一个国际研究小组的一项新研究表明,在减少大气中破坏地球臭氧保护层的化学物质含量方面取得了重大进展,证实了限制生产和使用这些化学物质的历史性规定取得了成功。Empa 的科学家们在少女峰的高山研究站进行了测量,为这项研究做出了贡献。这项研究由布里斯托尔大学的研究人员领导,最近发表在《自然-气候变化》杂志上。研究首次表明,大气中被称为氯氟烃(HCFCs)的强效消耗臭氧层物质(ODS)的含量显著下降。这些氯氟烃也是有害的温室气体(GHGs),因此减少它们也会减轻全球变暖。《蒙特利尔议定书》于 1987 年在国际上达成一致,旨在对消耗臭氧层物质的生产和使用进行控制。消耗臭氧层物质曾广泛用于数百种产品的生产,包括冰箱、气溶胶喷雾剂、泡沫塑料和包装。HCFCs 是作为氯氟化碳 (CFCs) 的替代品而开发的。虽然自 2010 年起全球已禁止生产 CFC,但目前全球仍在逐步淘汰 HCFC 的生产和使用,淘汰日期定于 2040 年。它们将被不消耗臭氧层的氢氟碳化物(HFCs)和其他化合物所取代。对于 Empa 的科学家和合著者 Stefan Reimann 来说,这项研究是"遏制臭氧空洞措施历史上的一个里程碑,在这项研究中,我们首次证明,即使是消耗臭氧更多的氯氟化碳的替代产品现在也在减少这甚至比预期提前了五年"。资料来源:EMPA"这些结果非常令人鼓舞。它们强调了制定和遵守国际议定书的重要性",第一作者、布里斯托尔大学化学系的卢克-韦斯特(Luke Western)说。"没有《蒙特利尔议定书》,就不可能取得这样的成功。因此,这是对应对平流层臭氧消耗的多边承诺的有力支持,在应对人类引起的气候变化方面具有额外的益处"。国际研究显示,所有氟氯烃合计所含的消耗臭氧层氯的总量在 2021 年达到峰值。由于这些化合物也是强效温室气体,它们对气候变化的影响也在这一年达到峰值。这一峰值的出现比 2022 年发布的上一份臭氧评估报告中的预测提前了五年。尽管 2021 年和 2023 年之间的降幅不到 1%,但仍表明氟氯烃排放正朝着正确的方向发展。对于 Empa 的科学家和合著者 Stefan Reimann 来说,这项研究是"遏制臭氧空洞措施历史上的一个里程碑,在这项研究中,我们首次证明,即使是消耗臭氧更多的氯氟化碳的替代产品现在也在减少这甚至比预期提前了五年"。据这位 Empa 研究员说,之所以能够做到这一点,完全得益于国际协议的不断加强,以及借助大气测量(例如在少女峰进行的测量)对协议的验证。这些结果依赖于分布在全球各地的大气观测站的高精度测量,使用的数据来自高级全球大气气体实验(AGAGE)和美国国家大气与海洋管理局(NOAA),包括 Empa 科学家进行大气测量的少女峰高山研究站。合著者、Empa 的大气科学家 Martin Vollmer 说:"我们使用高灵敏度的测量技术和全面的协议来确保这些观测结果的可靠性。"这项研究的共同作者、美国国家海洋和大气管理局(NOAA)科学家艾萨克-维蒙特补充说:"这项研究强调了我们在环境监测中保持警惕和积极主动的迫切需要,确保其他受控的臭氧消耗气体和温室气体也遵循类似的趋势,这将有助于为子孙后代保护地球。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院研究人员实现前所未有的原子接近度

麻省理工学院研究人员实现前所未有的原子接近度 麻省理工学院的物理学家们开发出了一种技术,可以将原子(用箭头表示的球体)排列得比以前更紧密,最小可达 50 纳米。该研究小组计划利用这种方法将原子操纵到可以产生第一个纯磁性量子门的配置中这是新型量子计算机的关键构件。在这张图片中,磁相互作用由彩色线条表示。图片来源:研究人员提供;麻省理工学院新闻他们通常的做法是将原子冷却到静止状态,然后用激光将粒子排列到相距 500 纳米的位置这个限制是由光波长决定的。现在,麻省理工学院的物理学家们开发出了一种技术,可以将原子排列得更近,最小仅为 50 纳米。一个红血球的宽度约为 1000 纳米。物理学家在镝实验中展示了这种新方法,镝是自然界中磁性最强的原子。他们利用新方法操纵了两层镝原子,并将两层原子精确定位在 50 纳米之间。在这种极端接近的情况下,磁相互作用的强度是相隔 500 纳米的两层原子的 1000 倍。不同颜色的激光用于冷却和捕获镝原子。图片来源:研究人员提供更重要的是,科学家们能够测量原子接近所产生的两种新效应。它们增强的磁力导致了"热化",即热量从一层传递到另一层,以及层间的同步振荡。当原子层之间的距离越远,这些效应就越弱。麻省理工学院约翰-麦克阿瑟物理学教授沃尔夫冈-凯特尔(Wolfgang Ketterle)说:"我们已经把原子的间距从 500 纳米提高到 50 纳米,可以利用这一点做很多事情。在 50 纳米处,原子的行为有了很大的不同,我们正在进入一个新的领域。"凯特尔和他的同事说,这种新方法可以应用于许多其他原子,以研究量子现象。该研究小组计划利用这种技术将原子操纵成可以产生第一个纯磁性量子门的构型这是新型量子计算机的关键构件。研究小组于5月2日在《科学》杂志上发表了他们的研究成果。该研究的共同作者包括第一作者、物理系研究生杜力,以及皮埃尔-巴拉尔、迈克尔-坎塔拉、朱利叶斯-德-洪德和卢宇坤他们都是麻省理工学院-哈佛超冷原子中心、物理系和电子研究实验室的成员。研究人员调整激光系统的控制电子装置。图片来源:研究人员提供为了操纵和排列原子,物理学家通常首先将原子云冷却到接近绝对零度的温度,然后使用激光束系统将原子集中到一个光学陷阱中。激光是一种具有特定波长(电场最大值之间的距离)和频率的电磁波。波长将光所能形成的最小图案限制在 500 纳米,即所谓的光学分辨率极限。由于原子会被特定频率的激光吸引,因此原子会被定位在激光强度的峰值点上。因此,现有技术对原子粒子的定位距离有限,无法用于探索更短距离内发生的现象。凯特尔解释说:"传统技术止步于 500 纳米,受限的不是原子,而是光的波长。我们现在发现了一种新的光技巧,可以突破这一限制。"该团队的新方法与当前的技术一样,首先冷却原子云在这种情况下,冷却到大约 1 微开尔文,仅比绝对零度高出一线此时,原子接近静止。然后,物理学家可以使用激光将冻结的粒子移动到所需的构型中。然后,杜和他的合作者使用了两束激光,每束激光都有不同的频率(即颜色)和圆偏振(即激光电场的方向)。当这两束激光穿过超冷原子云时,原子会沿着两束激光中任何一束的偏振,向相反的方向自旋。结果,两束激光产生了两组相同的原子,只是自旋方向相反。每束激光都形成了一个驻波,即空间周期为 500 纳米的电场强度周期性模式。由于它们的偏振不同,每个驻波都能根据原子的自旋吸引和俘获两组原子中的一组。激光可以叠加和调整,使其各自峰值之间的距离小到 50 纳米,这意味着被引力吸引到各自激光峰值的原子将被同样的 50 纳米分开。但要做到这一点,激光器必须非常稳定,不受任何外部噪音的影响,例如实验中的震动甚至呼吸声。研究小组意识到,他们可以通过一根光纤来引导这两束激光,从而使它们保持稳定。杜力说:"通过光纤发送两束激光的想法意味着整台机器可能会剧烈晃动,但两束激光彼此保持绝对稳定。"作为对新技术的首次测试,研究小组使用了镝原子一种稀土金属,它是元素周期表中磁性最强的元素之一,尤其是在超低温条件下。然而,在原子尺度上,该元素的磁相互作用在 500 纳米的距离上也相对较弱。就像普通冰箱磁铁一样,原子之间的磁吸引力会随着距离的增加而增加,科学家们怀疑,如果他们的新技术能将镝原子间隔到 50 纳米的距离,就可能观察到磁性原子之间原本微弱的相互作用。坎塔拉说:"我们可能会突然产生磁相互作用,这种作用过去几乎可以忽略不计,但现在却非常强大。"研究小组将他们的技术应用于镝,首先对原子进行过冷处理,然后通过两束激光将原子分成两个自旋组或自旋层。他们发现,两层镝原子确实向各自的激光峰引力,这实际上将原子层分开了 50 纳米这是任何超冷原子实验所能达到的最近距离。在这种极度接近的情况下,原子的自然磁性相互作用得到了显著增强,比相距 500 纳米的原子强 1000 倍。研究小组观察到,这些相互作用产生了两种新的量子现象:集体振荡,即一层的振动导致另一层同步振动;热化,即一层纯粹通过原子的磁波动将热量传递给另一层。杜指出:"到目前为止,只有当原子处于同一物理空间并发生碰撞时,它们之间才能交换热量。现在,我们看到了被真空隔开的原子层,它们通过波动的磁场交换热量。"该团队的研究成果引入了一种新技术,可用于将多种类型的原子靠近放置。他们还表明,原子放置得足够近时,会表现出有趣的量子现象,可以利用这些现象来制造新的量子材料,并有可能制造出用于量子计算机的磁驱动原子系统。坎塔拉说:"我们将超分辨率方法带入了这一领域,它将成为进行量子模拟的通用工具。可能有许多变体,我们正在研究这些变体"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

日本研究在月球生成人造重力以实现居住

日本研究在月球生成人造重力以实现居住 日本京都大学和鹿岛公司12月18日宣布已启动共同研究,力争在月球表面生成人造重力,开发出类似在地球生活的居住设施。共同研究自本年度启动,首先通过模型或计算机模拟,讨论实现会面临的难题。力争到本世纪30年代在地球表面建造样板设施。若在月球表面等重力较小的环境长期生活,可能会出现骨质疏松或肌肉力量下降等对人体的负面影响。通过将居住设施像陀螺一样旋转的方式生成人造重力。按照计划,设施设想为被称为“旋转抛物线”的细长形状,直径约200米、高约400米,规模为可供数千至上万人生活。此前已制作1:2000比例的模型。 共同社-电报频道- #娟姐新闻:@juanjienews

封面图片

日本研究在月球生成人造重力以实现居住

日本研究在月球生成人造重力以实现居住 日本京都大学和鹿岛公司12月18日宣布已启动共同研究,力争在月球表面生成人造重力,开发出类似在地球生活的居住设施。共同研究自本年度启动,首先通过模型或计算机模拟,讨论实现会面临的难题。力争到本世纪30年代在地球表面建造样板设施。若在月球表面等重力较小的环境长期生活,可能会出现骨质疏松或肌肉力量下降等对人体的负面影响。通过将居住设施像陀螺一样旋转的方式生成人造重力。按照计划,设施设想为被称为“旋转抛物线”的细长形状,直径约200米、高约400米,规模为可供数千至上万人生活。此前已制作1:2000比例的模型。 共同社-电报频道- #娟姐新闻:@juanjienews

封面图片

中科院发布世界首套高精度月球地质图集

中科院发布世界首套高精度月球地质图集 中国科学院星期天(4月21日)凌晨零时发布全球首套高精度月球地质图集。 据中科院官网消息,这套图集包括《1:250万月球全月地质图集》和《1:250万月球分幅地质图集》, 其中《1:250万月球全月地质图集》包含《1:250万月球全月地质图》、《1:250万月球岩石类型分布图》和《1:250万月球构造纲要图》,《1:250万分幅地质图集》则包含30幅月球标准分幅地质图。 中国科学院地球化学研究所院士欧阳自远和研究员刘建忠领衔,联合吉林大学、山东大学、中国地质大学(北京)、中国地质科学院地质研究所,以及中国科学院地理科学与资源研究所等单位的科学家和制图人员,从2012年起共同研究编制完成上述高精度月球地质图集。 这是一份月球科学领域立典式综合集成成果,不仅可以为探月工程科学目标制定和工程实施提供基础资料和科学参考,也填补了中国在月球与地外行星地质图编研方面的空白,为月球起源和演化乃至太阳系演化的研究作出中国贡献。 此次发布的图集和说明书采用中英文双语编制,其中主图《1:250万月球全月地质图》利用青、黑、黄、品红四个基色叠印出共150种颜色,对月球进行“三宙六纪”的地质年代划分;识别并标记全月12341个撞击坑、81个撞击盆地、17种岩石类型、14类构造,建立了统一的盆地建造亚类的分类体系。 该图集同时还表达探测着陆点、特殊高程点等一些特殊要素。此外,说明书与图集同步发布,详细介绍了编图使用的数据、图件比例尺选择原则、图面表达内容、“三宙六纪”月球地质年代划分方案、构造和岩石类型分类体系和月球地质演化历史等内容。 该图集目前已经集成至中国科学家搭建的数字月球云平台上,并服务于月球科学研究、科普教育以及中国未来月球探测工程的着陆区选址、月球资源勘查和路径规划。 2024年4月21日 5:12 PM

封面图片

NASA月球勘测轨道飞行器拍摄到中国嫦娥六号探测器在月球上的照片

NASA月球勘测轨道飞行器拍摄到中国嫦娥六号探测器在月球上的照片 这张来自美国国家航空航天局月球勘测轨道器照相机的图片显示的是2024年6月7日中国的嫦娥六号在月球远侧的阿波罗盆地。嫦娥六号着陆器就像图像中央的一小团明亮像素。图像宽 552 米;北面向上。资料来源:NASA/GSFC/亚利桑那州立大学6月7日,美国国家航空航天局(NASA)的月球勘测轨道飞行器(LRO)拍摄了中国嫦娥六号采样返回飞船在月球远侧的图像。嫦娥六号于6月1日着陆,近一周后,当LRO经过着陆点上空时,它获取了一张图像,显示着陆器位于一个被侵蚀的、直径55码(约50米)的陨石坑边缘。根据 LRO 相机小组的计算,着陆点坐标约为南纬 42 度,东经 206 度,海拔约为负 3.27 英里(负 5256 米)。这段由 LRO 图像制作的前后动画展示了嫦娥六号着陆器的外观。着陆器周围地形的亮度增加是由于着陆器发动机的干扰,与其他月球着陆器周围的爆炸区相似。之前的图像拍摄于2022年3月3日,之后的图像拍摄于2024年6月7日。图片来源:NASA/GSFC/亚利桑那州立大学嫦娥六号着陆点位于阿波罗盆地(直径约 306 英里或 492 千米,中心位于南纬 36.1 度,东经 208.3 度)的南部边缘。大约 31 亿年前,玄武岩熔岩在 Chaffee S 环形山南部喷发,并向西下坡流淌,直到遇到当地的地形高点,这可能与断层有关。该地区的几条皱脊使母岩表面发生变形并隆起。着陆点位于其中两个突出山脊的中间。该玄武岩流还与更西边可见的一个稍老的岩流(约 33 亿年)重叠,但较年轻的岩流由于具有较高的氧化铁和二氧化钛丰度而显得与众不同。嫦娥六号着陆点区域背景图。为清晰起见,对色差进行了增强处理。深色区域为玄武岩母岩沉积;母岩中较蓝的区域为高钛流。等高线标出了 100 米(约 328 英尺)的海拔高度间隔,以提供地形感。图像宽约 118 英里(190 公里)。资料来源:NASA/GSFC/亚利桑那州立大学美国国家航空航天局(NASA)的月球勘测轨道器(LRO)是一个重要的航天器,旨在对月球表面进行详细探测。该任务于 2009 年 6 月 18 日发射,主要目的是收集高分辨率图像和数据,以便于选择未来的着陆点、评估月球的矿产资源以及分析月球辐射环境。LRO 配备了一套功能强大的仪器,包括高分辨率照相机和激光测高仪,能够绘制出非常详细的月球地形图,帮助科学家了解月球的地质情况,并确定水冰等资源丰富的地区。美国宇航局月球勘测轨道器的艺术家效果图。图片来源:美国宇航局戈达德太空飞行中心月球轨道飞行器极大地促进了我们对月球的了解,为一些发现做出了贡献,例如证实了永久阴影环形山中水冰的存在,并绘制了月球表面温度图。月球轨道激光高度计(LOLA)和占卜者月球辐射计实验(Diviner Lunar Radiometer Experiment)等仪器提供了有关月球地形和热行为的重要数据,对规划未来的人类和机器人任务至关重要。通过不断将宝贵的数据传回地球,月球轨道器为正在进行的研究提供了支持,这些研究加强了我们重返月球及月球以外地区的战略,使其成为月球探测技术的基石。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人