来自VLT巡天望远镜的图像提供了遥远银河系相互作用的观察视角

来自VLT巡天望远镜的图像提供了遥远银河系相互作用的观察视角 ESO 510-G13,一个奇特的透镜星系,距离我们约 1.5 亿光年,位于水螅座方向。资料来源:INAF/VST,致谢:M. Spavone(INAF),R. Calvi(INAF)VST 完全由意大利建造,于 2011 年启用,目前由 INAF 通过 VST 国家协调中心进行管理。月满之夜是我们的自然卫星亮度干扰科学数据收集的时刻,VST 中心已经开始了一项面向公众的新举措,在月满之夜捕捉星云、星系和其他标志性天体的惊人图像。该计划旨在吸引公众在标准观测不太理想的时期对天体物理学的兴趣。"除了科学研究之外,VST 中心的目标之一是传播科学知识,与公众分享宇宙的奥妙。我们尤其希望年轻人能够通过这些神奇的图像发现并培养他们对天体物理学的兴趣",那不勒斯国家天体物理研究所(INAF)研究员、VST 国家协调中心负责人 Enrichetta Iodice 解释说。三幅新照片中的第一幅描绘的是ESO 510-G13,这是一个奇特的透镜状星系,距离我们约1.5亿光年,位于水螅座方向。星系中央的隆起非常突出。从边缘看去,灰尘盘的黑色轮廓穿过隆起,遮住了部分光线。尘埃盘扭曲的形状隐约像一个倒立的 S,这表明 ESO 510-G13 的过去充满了动荡,它可能是在与另一个星系发生碰撞后才变成了现在的样子。在右下角,银河系的众多恒星散布在整个图像中,其中还可以看到一对螺旋星系,距离我们约 2.5 亿光年。将图像放大,即使距离更远,也能看到更多的星系,它们就像背景中许多小点中拉长的小光点。由四个星系组成的小星系群,名为希克森紧凑星系群 90(HGC 90),距离地球约 1 亿光年,朝向南鱼座。资料来源:INAF/VST/VEGAS,E. Iodice(INAF)。鸣谢:M:M. Spavone (INAF), R. Calvi (INAF)另一张图片展示了一个由四个星系组成的小星系群,名为希克森紧凑星系群 90(HGC 90),距离地球约 1 亿光年,朝向南鱼座。图像中心附近的两个圆形亮点是椭圆星系 NGC 7173 和 NGC 7176。分叉并连接这两个星系的明亮条纹是该星系群的第三个成员螺旋星系 NGC 7174:它奇特的形状表明,这三个天体之间正在发生相互作用,剥离了它们的恒星和气体,混淆了它们的分布。漫射光晕笼罩着这三个星系。属于这个星系群的第四个星系,NGC 7172,在图像的上半部分可以看到,似乎并没有参与这场天体舞蹈:它的核心被黑暗的尘埃云穿过,隐藏着一个超大质量的黑洞,一直在积极地吞噬着周围的物质。HGC 90 四星系被镶嵌在一个更大的结构中,包括数十个星系,其中一些在这张图片中可见。从室女座方向可以观测到的 Abell 1689星系团。资料来源:INAF/VST。鸣谢:M:M. Spavone(国家天文台),R. Calvi(国家天文台)第三幅图像显示的是室女座的阿贝尔 1689星系团,这是一个包含两百多个星系的丰富星系团。阿贝尔1689星系团包含两百多个星系,大部分呈黄橙色球状,它们的光线经过大约20亿年的传播才到达VST。巨大的质量,包括大量的热气体和神秘的暗物质以及星系,使星系团附近的时空发生了变形。因此,星团就像一个"引力透镜",照射在更遥远的星系上,放大它们的光线,产生扭曲的图像,就像放大镜的作用一样。其中一些星系可以被看成小点和微小的、略微弯曲的线条,尤其是在星团的中心区域。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

哈勃太空望远镜探索银河系微弱星等的奥秘

哈勃太空望远镜探索银河系微弱星等的奥秘 哈勃太空望远镜拍摄的 UGC 11105 图像,这是一个位于 1.1 亿光年外的螺旋星系。它的视星等为 13.6 等,相对较暗,由于星等的反向对数标度,它比太阳和许多天体都要暗得多。尽管它的体积很大,但从地球上看却不那么明亮。图片来源:ESA/哈勃和 NASA,R. J. Foley(加州大学圣克鲁兹分校)2019 年在这个星系中发生的II 型超新星爆炸虽然在这张图片中已经看不到了,但当时绝对比这个星系更耀眼!更准确地说,UGC 11105 在光学系统中的视星等约为 13.6 等(这幅图像是利用涵盖光学系统核心部分的数据以及紫外线数据绘制的)。天文学家有不同的方法来量化天体的亮度,视星等就是其中之一。首先,这个量的"视"的部分指的是视星等只描述了从地球上看物体的亮度,这与测量物体的实际亮度是两码事。例如,在现实中,变星参宿四的亮度大约是太阳的 21000 倍,但由于太阳离地球更近,参宿四的亮度似乎远远低于太阳。"幅值"部分比较难描述,因为幅值刻度没有相关的单位,不像质量(我们用千克来衡量)或长度(我们用米来衡量)。幅值只有相对于其他幅值才有意义。此外,等阶不是线性的,而是一种被称为"反向对数"的数学等阶,这也意味着低等天体比高等天体更亮。举例来说,UGC 11105的光学视星等约为13.6,而太阳的视星等约为-26.8。考虑到反向对数标度,这意味着从我们在地球上的角度来看,太阳的亮度大约是UGC 11105的14000万亿倍,尽管UGC 11105是一个完整的星系.人类肉眼能看到的最暗星约为六等,大多数星系都比它暗得多。不过,哈勃已经发现了视星等高达 31 等的天体,因此 UGC 11105 并不构成太大的挑战。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

欧几里得太空望远镜首次提供科学图像 追踪宇宙的黑暗面

欧几里得太空望远镜首次提供科学图像 追踪宇宙的黑暗面 欧几里得的优势在于它的多样性:欧几里得大图像平面的这一小部分显示了英仙座星系团的细节。在2.4亿光年的距离上,可以清晰地辨认出前景中作为星系团一部分的各种类型和形状的星系,以及背景中一系列微弱、弥漫的光点在欧几里得成像之前,这些星系的光线已经传播了数十亿年。图片来源:ESA/Euclid/Euclid Consortium/NASA, Image Processing by J.-C.Cuillandre, G. Anselmi; CC BY-SA 3.0 IGO这幅画描绘的是欧空局的欧几里得(Euclid)航天器。欧几里得号是一项开创性的任务,旨在观测数十亿个微弱的星系,研究宇宙加速膨胀的起源,以及暗能量、暗物质和引力的神秘本质。图片来源:欧空局这些图像是将其两台仪器的数据结合在一起的结果:VIS(可见光仪器)和NISP(近红外摄谱仪和光度计)旨在利用大面积探测器捕捉可见光和近红外线。欧几里德望远镜最重要的任务是对宇宙进行最详细的三维测绘,从而揭开宇宙的一些秘密。包括马克斯-普朗克天文学和地外物理学研究所在内的欧几里得联合会德国成员开发了望远镜的关键技术组件。他们还为管理庞大的数据流提供后勤服务,并确保公布数据的质量。追踪暗物质这幅来自欧几里德的图像是第一次在如此大的图像截面上同时捕捉到英仙座星系团中如此多的星系,而且细节如此丰富。这幅图像显示了属于英仙座星系团的 1000 个星系,英仙座星系团是宇宙中质量最大的结构之一。在背景中还可以看到距离更远的其他 5 万多个星系。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO以前的太空望远镜,如哈勃望远镜或詹姆斯-韦伯望远镜,都是为了详细观测天空中非常小的区域而建造的。而欧几里德望远镜则以同样高的图像质量拓宽了视野:得益于其大型光学系统、灵敏的仪器以及位于地球大气层之外的位置,它能在相对较短的观测时间内提供大片天空的图像,这些图像也非常清晰,并包含了遥远星系的微弱光线。通过发布的图像,欧几里得联盟成员利用五个选定的天体展示了欧几里得的全部潜能。每幅图像覆盖的区域比满月稍大。到任务结束时,大约有 40000 个这样的图像部分将被合并,形成天空中约 14,000 平方度的广阔区域。这占整个天空的三分之一,不包括我们自己的银河系。一个让人联想起我们银河系的星系:IC 342 星系距离我们 1100 万光年,在天空中看起来和满月差不多大。在运行过程中,Euclid 将对数十亿个其他星系进行成像,这些星系甚至比 IC 342 更遥远,它们揭示了暗物质和暗能量的无形影响。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO现已发布的图像清楚地表明了一点:每张图像都将是一座宝库,让人们对单个恒星、银河系或遥远星系的物理学有新的认识。位于慕尼黑附近加兴的马克斯-普朗克地外物理研究所和慕尼黑路德维希-马克西米利安大学的 Maximilian Fabricius 说:"这台望远镜将收集大量数据,探测到比以前更多的天体。我们都需要适应欧几里得将提供的大量信息"。有深度的快照:这个图像截面比英仙座星团的整体图像小 200 倍左右,能让人感受到前景英仙座星团壮丽图像所掩盖的细节。带有六个星形"尖峰"的最亮点是前景中银河系的恒星。在这些恒星之间有许多漫射的微红色斑块,它们是宇宙早期的星系。有些星系距离我们非常遥远,以至于它们的光线需要 100 亿年才能到达我们这里。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO英仙座星系团就是一个例子。这些星系团是宇宙中一些最大、最庞大的结构。如果没有暗物质网络,这里描述的星系将均匀地分布在天空中。马克斯-普朗克地外物理研究所和路德维希-马克西米利大学的科学家马蒂亚斯-克鲁格解释说:"利用欧几里德望远镜的巨大视场和超高的灵敏度,可以测量英仙座星系团中的星系,直至它们最外围和最暗淡的区域。"在同一张图片中,还有其他与英仙座星团无关的星系。由于光的传播速度是有限的,在宇宙中看得越远,发现的星系就越古老,处于不同发展阶段的星系也就越多。这些丰富的信息将大大有助于研究人员了解以星系的大量碰撞和合并为标志的宇宙早期"。银河系附近的一个奇异星系:不规则星系NGC 6822是矮星系的一个例子,它不像我们的银河系那样有适当的旋臂。这种星系被认为是附近年轻宇宙中成熟星系的组成部分,欧几里得将绘制出完整的宇宙地图。如果你仔细观察,就能辨认出单个恒星,甚至超新星残骸。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO我们的宇宙中约有 95% 似乎由神秘的"暗"元素组成,它们在英仙座星系团的形成过程中也发挥了作用。暗物质决定着星系之间和星系内部的引力效应,最初减缓了宇宙的膨胀,而暗能量则推动着宇宙目前的加速膨胀。然而,暗物质和暗能量的本质仍然难以捉摸。科学家们所知道的是,这些物质会使望远镜观测到的物体的外观和运动发生微妙的变化。为了探测"暗"对可见宇宙的影响,欧几里得号将在未来六年内观测 100 亿光年外数十亿星系的形状、距离和运动。在这里,来自 NIST 红外仪器的光谱信息得到了来自地面望远镜的光学光谱的补充,这将非常精确地确定欧几里得所拍摄星系的距离和运动情况,并将欧几里得的二维照片转化为有史以来最全面的可见宇宙三维地图。欧几里得号是欧洲航天局(ESA)的一项太空任务,美国国家航空航天局(NASA)为该任务做出了贡献。它是欧空局宇宙视野计划的一部分。VIS 和 NISP 相机是由来自 17 个国家的科学家和工程师联合开发和制造的,其中许多来自欧洲,但也有美国、加拿大和日本。在德国,海德堡马克斯-普朗克天文学研究所、加兴马克斯-普朗克地外物理学研究所、慕尼黑路德维希-马克西米利安大学、波恩大学、波鸿鲁尔大学和波恩德国航空航天中心的德国航天局都参与了这项工作。德国航天中心的德国航天局负责协调德国对欧空局的贡献,并为参与的德国研究机构提供资金。德国是欧空局科学计划的最大贡献者,约占 21%。编译自/ScitechDaily ... PC版: 手机版:

封面图片

哈勃望远镜用最锐利的视角揭示光栅星系的尘埃和暗物质

哈勃望远镜用最锐利的视角揭示光栅星系的尘埃和暗物质 哈勃望远镜拍摄到的 NGC 4753 星系显示了复杂的尘埃结构和暗物质光环。这个星系是研究星系形成和测量宇宙距离的重要场所。NGC 4753 位于室女座,距离地球约 6000 万光年,由天文学家威廉-赫歇尔于 1784 年首次发现。它是室女座第二云中 NGC 4753 星系群的成员,该星系群由大约 100 个星系和星系团组成。这个星系据信是大约 13 亿年前与附近的一个矮星系合并的结果。NGC 4753星系核周围明显的尘埃通道据说就是这次合并过程中吸积形成的。现在人们相信,银河系中的大部分质量都存在于暗物质构成的略微扁平的球形光环中。暗物质是一种目前无法直接观测到的物质,但被认为占宇宙中所有物质的85%左右。它之所以被称为"暗物质",是因为它似乎不与电磁场发生相互作用,因此似乎不会发射、反射或折射光线。由于这个天体的低密度环境和复杂结构,它对检验透镜状星系形成的不同理论也具有科学意义。此外,这个星系还是两个已知的 Ia 型超新星的宿主。这些类型的超新星极其重要,因为它们都是由白矮星爆炸引起的,而白矮星都有伴星,并且总是以相同的亮度达到峰值比太阳亮 50 亿倍。了解这些事件的真实亮度,并将其与表观亮度进行比较,为天文学家提供了一个测量宇宙距离的独特机会。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜展示距离银河系较近的19个螺旋星系

韦伯望远镜展示距离银河系较近的19个螺旋星系 让天文学家惊讶的是,图像还显示了气体和尘埃中的大型球形外壳,这些外壳可能是由爆炸的恒星产生的。牛津大学天文学家托马斯·威廉姆斯表示,这些数据很重要,因为它们为我们提供了关于恒星形成最早阶段的新视角。公开资料显示,韦伯太空望远镜造价100亿美元,是美国航天局迄今建造的最大、功能最强的空间望远镜。其主镜直径6.5米,由18片巨大六边形镜片构成;配有5层可展开的遮阳板。韦伯太空望远镜2021年12月25日从法属圭亚那库鲁航天中心发射升空,一个月后进入围绕日地系统第二拉格朗日点的运行轨道,距离地球约150万千米。 ... PC版: 手机版:

封面图片

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离 哈勃太空望远镜通过观测 Ia 型超新星(如 NGC 3810 中的超新星)来帮助测量宇宙距离,利用它们一致的亮度来测量根据星系间尘埃效应调整后的距离。资料来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley天体物理学的一项重要任务是测量星系、类星体和星系团等真正遥远天体的距离。在研究早期宇宙时尤其如此,但这是一项艰巨的任务。只有太阳、行星和一些邻近恒星等少数邻近天体,我们才能直接测量它们的距离。除此之外,我们还需要使用各种间接方法;其中最重要的一种方法就是研究 Ia 型超新星,而这正是NASA/ESA 哈勃太空望远镜的作用所在。NGC 3810,也就是这张照片中的星系,是 2022 年一颗 Ia 型超新星的宿主。2023 年初,哈勃聚焦于这个星系和其他一些星系,仔细研究最近的 Ia 型超新星。这种超新星是由白矮星爆炸产生的,它们的亮度都非常一致。这使得它们可以被用来测量距离:我们知道Ia型超新星应该有多亮,所以我们可以根据它的暗淡程度来判断它的距离有多远。这种方法的一个不确定因素是,地球和超新星之间的星际尘埃会阻挡部分光线。你怎么知道光的减少有多少是由距离造成的,有多少是由尘埃造成的?在哈勃的帮助下,我们找到了一个巧妙的解决方法:用紫外光和红外光拍摄同一 Ia 型超新星的图像,紫外光几乎完全被尘埃遮挡,而红外光则几乎不受影响地穿过尘埃。通过仔细观察每个波长有多少光穿过,就可以校准超新星亮度和距离之间的关系,从而考虑到尘埃的影响。这幅图像描绘的是螺旋星系 NGC 3810。2023 年,该星系被列入哈勃计划,以提高利用 Ia 型超新星进行距离测量的精确度。之所以能做到这一点,是因为 NGC 3810 中的一颗白矮星刚刚变成超新星,哈勃在超新星从视野中消失之前捕捉到了这幅图像。超新星以发现年份命名,后跟字母递增标签a、b,以此类推。如今,通过自动巡天,每年都会发现成千上万颗超新星,因此这颗超新星被命名为SN 2022zut,即2022年发现的第18000142颗超新星!图片来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley哈勃可以用同一台仪器对这两种波长的光进行详细观测。这使它成为了这项实验的完美工具,事实上,用来制作 NGC 3810 这幅美丽图像的部分数据就集中在它的 2022 年超新星上。你可以看到它在银河核下方的一个光点,或者在上面的注释图像中看到它。测量宇宙距离的方法有很多;因为 Ia 型超新星非常明亮,所以当发现它们时,它们是最有用、最精确的工具之一。此外,还必须使用许多其他方法,要么作为对其他距离测量的独立检验,要么测量更近或更远的距离。其中一种方法也适用于星系,那就是将星系的旋转速度与亮度进行比较;根据这种方法,我们发现 NGC 3810 距地球 5000 万光年。编译自/ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭 美国国家航空航天局的哈勃太空望远镜观测到了12个相互作用的星系,发现了富含气体、尘埃和恒星的长潮汐尾迹,沿潮汐尾迹发现了425个新生恒星簇。这些星团每个都包含多达 100 万颗蓝色的新生恒星,它们是星系碰撞的结果,星系碰撞引发了恒星的形成而不是毁灭。从这张哈勃太空望远镜拍摄的图片中可以看到,AM 1054-325 星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了 S 形。这样的一个后果是,新生的恒星群沿着一条延伸数千光年的潮汐尾迹形成,就像一串珍珠。它们的形成是由于气体结在引力作用下坍缩,从而在每个星团中产生了大约 100 万颗新生恒星。资料来源:NASA、ESA、STScI、Jayanne English(马尼托巴大学)与你的想象相反,星系碰撞并不会摧毁恒星。事实上,粗暴和翻滚的动力学引发了新一代恒星的诞生,并可能伴随着行星的诞生。现在,美国国家航空航天局的哈勃太空望远镜已经锁定了12个相互作用的星系,这些星系有着长长的、像蝌蚪一样的潮汐尾巴,尾巴上有气体、尘埃和大量的恒星。哈勃望远镜的锐利度和对紫外线的敏感度发现了这些潮汐尾巴上的 425 个新生恒星星团,看上去就像一串串节日彩灯。每个星团包含多达 100 万颗蓝色的新生恒星。潮汐尾部的星系团已经存在了几十年。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流。触须星系和老鼠星系就是两个广为人知的例子,它们都有狭长的手指状突起。一个天文学家小组结合新的观测数据和档案数据,得到了潮汐尾部星团的年龄和质量。他们发现,这些星团非常年轻只有1000万年的历史。而且它们似乎是以同样的速度沿着绵延数千光年的尾巴形成的。"在尾部看到大量年轻天体是个惊喜。它告诉我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院的迈克尔-罗德鲁克说。"有了潮汐尾部,你就会建立起新一代的恒星,否则这些恒星可能不会存在"。这些尾巴看起来就像是星系的旋臂,并将其伸向太空。旋臂的外部像太妃糖一样被一对相互作用的星系之间的引力拉扯着。在星系合并之前,星系中含有丰富的分子氢尘埃云,这些尘埃云可能一直处于惰性状态。但是,这些氢云在碰撞过程中受到了挤压和撞击。这就把氢压缩到了一定程度,从而引发了一场恒星诞生的风暴。这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团就像那些在银河系平面外运行的星团一样。或者,它们可能会分散开来,在宿主星系周围形成一个恒星光环,或者被抛弃,成为星系间的流浪恒星。在宇宙早期,星系之间的碰撞更为频繁,这种串珠状恒星形成可能更为常见。哈勃观测到的这些附近的星系是很久以前发生的事情的代表,因此是研究遥远过去的实验室。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人