科学家发现克服光学损耗的新方法 有望开启光基技术的未来

科学家发现克服光学损耗的新方法 有望开启光基技术的未来 这些研究成果提供了实用的解决方案,如在计算机芯片和数据存储设备等设备中使用更高效的光基设备,以实现更快、更紧凑的数据存储和处理,并提高传感器、成像技术和安全系统的精度。表面等离子体极化子和声子极化子具有高效储能、局部场增强和高灵敏度等优点,这得益于它们在小尺度上限制光的能力。然而,它们的实际应用却受到欧姆损耗问题的阻碍,欧姆损耗会在与天然材料相互作用时导致能量耗散。双曲声子极化子和椭圆声子极化子在α-MoO3 薄膜上的传播。(a) 在 α-MoO3 薄膜上放置天线的原子力显微镜。(b) 在不同实际频率下测量双曲极化子的实际频率。(c) 复频测量提供了超长距离传播行为。(d) 两个不同间距金天线的原子力显微镜。(e) 实际频率 f=990cm-1 时的振幅和实部测量值。(f) 复频 f=(990-2i)cm-1 时的振幅和实部测量值。(图片改编自《自然-材料》,2024 年)。资料来源:香港大学过去三十年来,这一限制阻碍了用于传感、超成像和纳米光子电路的纳米光子学的发展。克服欧姆损耗将大大提高器件性能,从而推动传感技术、高分辨率成像和先进纳米光子电路的发展。论文通讯作者张爽教授解释了研究重点:"为了解决关键应用中的光损耗难题,我们提出了一种实用的解决方案。通过采用新颖的合成复波激励,我们可以实现虚拟增益,抵消极化子系统的内在损耗。为了验证这种方法,我们将其应用于声子极化子传播系统,并观察到极化子传播的显著改善。""我们使用声子极化子材料(如氢化硼和氧化钼)在光学频率范围内进行实验,证明了这种方法。正如预期的那样,我们获得了几乎无损的传播距离,这与理论预测一致,"论文第一作者、香港大学物理系博士后关复新博士补充道。克服光损耗的多频方法在这项研究中,研究小组开发了一种新颖的多频方法来解决偏振子传播中的能量损耗问题。他们使用一种被称为"复频波"的特殊类型波来实现虚拟增益并补偿光学系统中的损耗。普通波在一段时间内保持恒定的振幅或强度,而复频波则同时表现出振荡和放大。这种特性可以更全面地表现波的行为,并能补偿能量损失。使用在光频下工作的 hBN 薄膜进行一维极化子传播(从左到右)。(a) 实际频率图像显示了传播方向上明显的衰减场剖面。(b) 复频测量提供了几乎无衰减的传播行为。(图片改编自《自然-材料》,2024 年)来源:香港大学虽然频率通常被视为实数,但它也有虚部。这个虚部告诉我们,随着时间的推移,波是如何变强或变弱的。具有负(正)虚部的复频波会随着时间的推移而衰减(放大)。然而,在光学中直接进行复频波激励下的测量具有挑战性,因为它需要复杂的时序测量。为了克服这一难题,研究人员采用了傅里叶变换数学工具,将截断的复频波(CFW)分解为具有独立频率的多个分量。就像您在烹饪时需要一种很难找到的特定配料一样,研究人员也采用了类似的思路。他们将复杂的频率波分解成更简单的成分,就像在菜谱中使用替代配料一样。每个成分代表了频率波的不同方面。这就像通过使用替代配料来制作一道美味佳肴,从而获得所需的风味。通过测量不同频率下的这些分量并将数据结合起来,他们重建了复频波照射下的系统行为。这有助于他们理解和补偿能量损失。这种方法大大简化了 CFW 在不同应用中的实际应用,包括极化子传播和超成像。通过在固定间隔的不同实际频率下进行光学测量,就可以构建出系统在复频下的光学响应。这可以通过对不同实际频率下获得的光学响应进行数学组合来实现。该论文的另一位通讯作者、国家纳米科学与技术中心的戴清教授指出,这项工作为解决纳米光子学中存在已久的光损耗问题提供了切实可行的解决方案。他强调了合成复频方法的重要意义,指出该方法可轻松应用于分子传感和纳米光子集成电路等其他各种应用。他进一步强调说:"这种方法非常了不起,而且普遍适用,因为它还可以用来解决其他波系统的损耗问题,包括声波、弹性波和量子波,从而将成像质量提高到前所未有的水平。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家发明测量水环境中纳米尺度的极微小力的新方法

科学家发明测量水环境中纳米尺度的极微小力的新方法 超分辨光子力显微镜,用于探测纳米粒子与表面之间的超弱相互作用力。资料来源:Lei Ding这项新技术采用了超分辨光子力显微镜(SRPFM),能够检测到水中小至 108.2 牛顿的力如此微小的力相当于测量一个病毒的重量。北京航空航天大学的首席研究员王凡教授说,这种超灵敏测量的关键在于使用掺镧纳米粒子,通过光学镊子将其捕获,然后用来探测生物系统内的微小作用力。他说:"了解这些微小的力对于研究生物力学过程至关重要,而生物力学过程是活细胞工作的基础。到目前为止,由于探针发热和信号微弱等因素,在液体环境中高精度测量如此微小的力是一项重大挑战。"王及其团队开发的 SRPFM 技术通过采用先进的纳米技术和计算技术解决了这些难题。通过利用神经网络驱动的超分辨率定位技术,研究小组能够精确测量纳米粒子在流体介质中如何受到微小力的作用而发生位移。这项研究的共同第一作者、皇家墨尔本理工大学的丁磊博士说,这项创新不仅提高了力测量的分辨率和灵敏度,还最大限度地降低了捕获纳米粒子所需的能量,从而减少了对生物样本的潜在损害。丁说:"我们的方法可以检测到低至每平方根带宽1.8飞牛顿的力,这接近热噪声的理论极限。"这项研究的影响是巨大的,共同第一作者、北京航空航天大学的单旭晨博士补充道。单说:"通过提供一种在分子水平上测量生物事件的新工具,这项技术可以彻底改变我们对一系列生物和物理现象的理解。这包括从蛋白质如何在人体细胞内发挥作用到早期检测疾病的新方法等方方面面。单该研究还探索了该技术在测量作用于单个纳米粒子的电泳力以及DNA分子与界面之间的相互作用力方面的应用,这对于开发先进的生物医学工程技术至关重要。研究小组的发现不仅为新的科学发现铺平了道路,而且还可能应用于开发新的纳米技术工具和提高生物医学诊断的灵敏度。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现利用营养物质有效治疗癌症的新方法

科学家发现利用营养物质有效治疗癌症的新方法 一个国际研究小组开发出一种治疗癌症的新方法,利用营养物质重新激活癌细胞中休眠的代谢途径。研究小组利用一种广泛存在的氨基酸酪氨酸,以纳米药物的形式输送,改变了黑色素瘤(一种严重的皮肤癌)的新陈代谢,从而抑制了癌症的生长。澳大利亚是世界上皮肤癌发病率最高的国家。这种新方法可以与现有疗法相结合,更好地治疗黑色素瘤。这项技术还有可能治疗其他类型的癌症。这项研究由复旦大学的卜文波教授和悉尼科技大学的金大勇教授领导,最近发表在著名期刊《自然纳米技术》(NatureNanotechnology)上。酪氨酸在生物体内的生物利用率有限。然而,研究人员利用一种新的纳米技术,将酪氨酸包装成被称为纳米微粒的微小颗粒,这种微粒会被癌细胞膜吸引,并很容易分解,从而促进吸收。研究小组随后在小鼠和实验室中的人源黑色素瘤细胞中测试了这种创新疗法,发现酪氨酸纳米微粒重新激活了休眠代谢途径,引发了黑色素合成,抑制了肿瘤生长。"不受控制的快速生长是癌细胞区别于正常细胞的一个关键特征。在癌细胞中,一些新陈代谢途径被过度激活,而另一些则被抑制,从而为快速扩散创造了必要的环境,"金教授说。"虽然此前已开发出一些基于代谢的癌症药物,如阻碍乳腺癌中雌激素合成的芳香化酶抑制剂和针对各种癌症中糖酵解的HK2抑制剂,但这些药物都是通过抑制过度激活代谢途径来发挥作用的。""我们的研究首次表明,通过重新激活处于休眠状态的新陈代谢途径,可以阻止癌症的发生。而这可以通过使用简单的营养物质来实现,如氨基酸、糖和维生素,它们安全、易得、耐受性好,"卜教授说。不同类型的癌症会对不同的营养物质做出反应。黑色素瘤细胞是从产生黑色素的皮肤细胞黑色素细胞发展而来的。黑色素的生成需要酪氨酸,酪氨酸能刺激黑色素的生成,因此对黑色素瘤有效。黑色素合成的重新激活迫使黑色素瘤细胞减少糖酵解(将糖转化为能量的过程),这被认为是其抗癌作用的机制。黑色素瘤细胞也容易受到热应力的影响。研究人员发现,通过将酪氨酸纳米簇治疗与近红外激光治疗相结合,他们能够在六天后根除小鼠体内的黑色素瘤,而且在研究期间黑色素瘤不会再次发生。研究结果表明,利用纳米药物治疗癌症有望开辟一个新领域。编译自/ScitechDaily ... PC版: 手机版:

封面图片

科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法 自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC 国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(Rebecca Leane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多传统探测器可能无法看到。"有鉴于此,利恩和 SLAC 博士后研究员阿尼尔班-达斯找到了 SLAC 的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在 SLAC 工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是 SLAC 研究的一个非常好的协同效应。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家利用天然香气诱饵 发现消灭白蚁新方法

科学家利用天然香气诱饵 发现消灭白蚁新方法 白蚁这种令人头痛的昆虫,经常啃食房屋,造成严重的损害,如今美国加州大学河滨分校的科学家来带来一个令人振奋的消息,他们找到了一种有效、更环保和更经济的灭蚁方法

封面图片

中国科学家发现浩瀚宇宙中“定位”太阳新方法

中国科学家发现浩瀚宇宙中“定位”太阳新方法 记者从位于内蒙古自治区正镶白旗的中国科学院国家空间中心明安图野外科学观测研究站获悉,由中国科学院国家空间科学中心研究员颜毅华领衔的科研团队,发现一种新的可用于明安图射电频谱日像仪(MUSER)图像位置校准的方法,这种方法可在浩瀚宇宙中“定位”太阳准确位置。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

科学家提出预防流感传播的新方法:阻断糖分子以阻止病毒传播

科学家提出预防流感传播的新方法:阻断糖分子以阻止病毒传播 现在,一项在幼年小鼠身上进行的新研究表明,不让病毒颗粒附着在SA上不仅会限制甲型流感病毒感染的进入,还会阻碍它们的排出(脱落)和在小鼠之间的传播。这种感染是季节性流感的主要原因,每年造成 36000 多名美国人死亡。科学家们说,虽然有疫苗来预防感染和对症治疗,但它们并非万无一失,还需要更多的策略来防止感染扩散。在纽约大学格罗斯曼医学院研究人员的领导下,研究小组将一种神经氨酸酶直接放入小鼠鼻腔,使SA受体脱氨酰基化,已知这种酶能使SA酸松动,无法继续附着在细胞表面。结果显示,使用神经氨酸酶处理后,在测试的半打流感病毒株中,小鼠对小鼠的传播率大幅降低了一半以上(从 51% 到 100% )。研究小组在美国微生物学会期刊《mBio》上发表的研究成果是在婴幼儿小鼠身上进行的。研究小组发现,婴幼儿小鼠与几个月大的小鼠或成年小鼠不同,它们的呼吸道上部有许多唾液酸。具体来说,研究小组阻断了两种SA,技术上称为α-2,3 SA和α-2,6 SA受体(锁)。众所周知,这两种物质广泛存在于人类的呼吸道中,研究人员说,这使得婴儿小鼠成为研究传染病在儿童中传播的一个强有力的可比模型,而儿童也被认为是流感在人群中传播的重要"驱动力"。这项研究的主要研究者、传染病专家米拉-奥蒂戈扎(Mila Ortigoza)博士说:"如果进一步的人体实验证明是成功的,那么去氨酰化神经氨酸酶可能会阻止流感的传播。"Ortigoza是纽约大学朗格尼分校医学系和微生物学系的助理教授,他说:"虽然目前的疫苗和治疗方法都是针对病毒的,但我们的研究首次证明,治疗宿主(受感染的小鼠或可能受感染的人类)以防止它们将病毒传播给另一个宿主,可能是另一种有效的抗击普遍性传染病的策略。"在考虑批准将神经氨酸酶作为人类治疗手段之前,还需要进行大量的临床研究。研究小组已经计划进行更多的实验,研究为什么婴儿更容易感染呼吸道病毒,以及阻断儿童体内的神经氨酸是否也能防止流感的传播。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人