欧洲核子研究中心再现来自黑洞的物质:反物质等离子体火球

欧洲核子研究中心再现来自黑洞的物质:反物质等离子体火球 超大质量黑洞发射等离子体喷流的艺术家印象图,欧洲核子研究中心的科学家们现在已经在实验室中重现了这一场景。美国宇航局/JPL-加州理工学院这些所谓的相对论喷流被认为包含了由电子及其反物质等价物正电子组成的等离子体。但是,这种物质究竟是如何形成的,又有什么作用,很难通过天文观测和计算机模拟来测量。于是,欧洲核子研究中心的科学家们开始在实验室里制造他们自己的版本。利用高辐射材料(HiRadMat)设施,研究小组从超级质子同步加速器中捕获了 3000 亿个质子,并将它们喷射到石墨和钽制成的靶子上。这引发了一连串的粒子相互作用,产生了足够多的电子-正电子对来维持稳定的等离子状态。产生等离子体的一系列相互作用示意图 罗切斯特大学激光能量学实验室插图/Heather Palmer首先,质子撞击石墨中的碳原子核,产生的能量足以撞散其中的基本粒子。其中的中性粒子很快衰变为高能伽马射线。这些伽马射线随后与钽的电场相互作用,进而产生成对的电子和正电子。在这次试运行中,产生的电子-正电子对达到了惊人的 10 万亿个,足以让它开始表现得像一个真正的天体物理等离子体。"这些实验的基本理念是在实验室中重现天体物理现象的微观物理学,例如黑洞和中子星的喷流,"该研究的合著者吉安卢卡-格雷戈里(Gianluca Gregori)说。"我们对这些现象的了解几乎完全来自天文观测和计算机模拟,但望远镜无法真正探测微观物理,模拟也涉及近似。像这样的实验室实验是连接这两种方法的桥梁。"这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

相关推荐

封面图片

欧洲核子研究中心实验室再现物质/反物质黑洞喷流

欧洲核子研究中心实验室再现物质/反物质黑洞喷流 Fireball合作小组利用欧洲核子研究中心的HiRadMat设施产生了一种物质和反物质喷流的模拟,这种喷流从一些黑洞和中子星中喷涌而出。在欧洲核子研究中心的 HiRadMat 设备上,研究人员制造出了一束高密度电子-正电子等离子体束,模拟了来自黑洞的天体物理喷流,为研究太空现象提供了新的视角。这些实验有助于用真实世界的数据验证理论模型,为深入了解黑洞喷流等宇宙事件铺平道路。潜入一个活跃星系的中心,你会发现一个超大质量黑洞正在吞噬周围的物质。在大约十分之一的此类星系中,黑洞还会以接近光速的速度喷射出物质射流。这种相对论黑洞喷流被认为包含了电子对及其反物质等价物正电子的等离子体等成分。这种相对论电子-正电子等离子体被认为会影响黑洞及其环境的动力学和能量预算。但究竟是如何发生的,人们仍然知之甚少,因为既很难用天文观测来测量等离子体,也很难用计算机程序来模拟它。在最近发表于《自然-通讯》(Nature Communications)的一篇论文中,查尔斯-阿罗史密斯(Charles Arrowsmith)和火球合作项目的同事们报告了他们是如何利用欧洲核子研究中心(CERN)的 HiRadMat 设备产生一束电子-正电子等离子体相对论束,从而在实验室实验中对这种介质进行详细研究的。活动星系半人马座 A,等离子体喷流从其中央黑洞喷出。资料来源:ESO/WFI(光学),MPIfR/ESO/APEX/A.Weiss et al.(亚毫米波)、NASA/CXC/CfA/R.天体物理现象的实验室复制在不同类型的实验室配备的高功率激光设施可以通过多种方式产生电子-正电子对的相对论束。然而,现有的方法都无法产生维持等离子体所需的电子-正电子对数量,而等离子体是一种物质状态,其中各组成粒子之间的连接非常松散。如果不能维持等离子体,研究人员就无法研究这些黑洞喷流的类似物在穿过相当于星际介质的实验室时是如何变化的。这项研究是解释地面和太空望远镜观测结果的关键。阿罗史密斯及其同事在欧洲核子研究中心的 HiRadMat 设备上找到了满足这些要求的方法。他们的方法是从实验室的超级质子同步加速器(Super Proton Synchrotron)中在仅纳秒级的时间内提取出高达三千亿个质子,然后将它们发射到石墨和钽靶上,在此过程中,一连串的粒子相互作用产生了大量的电子-正电子对。 通过使用一套仪器测量产生的相对论电子-正电子束,并将结果与复杂的计算机模拟结果进行比较,阿罗史密斯及其合作者发现,电子-正电子束中的电子-正电子对数量超过十万亿对,是以前的十倍到百倍,首次超过了维持等离子体状态所需的数量。阿罗史密斯说:"电子-正电子等离子体被认为在天体物理喷流中扮演着重要角色,但这些等离子体和喷流的计算机模拟从未在实验室中进行过测试。实验室实验是验证模拟的必要条件,因为看似合理的模拟计算简化有时会导致截然不同的结论"。该结果是火球合作项目在 HiRadMat 进行的一系列实验的第一个结果。"这些实验的基本理念是在实验室中重现天体物理现象的微观物理学,例如来自黑洞和中子星的喷流,"论文合著者、首席研究员吉安卢卡-格雷戈里(Gianluca Gregori)说。"我们对这些现象的了解几乎完全来自天文观测和计算机模拟,但望远镜无法真正探测微观物理,模拟也涉及近似值。像这样的实验室实验是这两种方法之间的桥梁。"阿罗史密斯及其同事在 HiRadMat 等离子体实验中的下一个目标是让这些强大的射流在一米长的等离子体中传播,并观察它们之间的相互作用是如何产生磁场使射流中的粒子加速的这是高能天体物理学中最大的难题之一。"火球实验是 HiRadMat 最新增加的实验项目之一,"该设施的运营经理 Alice Goillot 说。"我们期待着利用欧洲核子研究中心加速器综合体的独特性能继续重现这些罕见的现象。"编译自/scitechdaily ... PC版: 手机版:

封面图片

科学简单点:什么是等离子体?

科学简单点:什么是等离子体? 在等离子体中,一些电子从中性原子(质子和电子数目相等,因此带中性电荷的原子)中分离出来,成为自由电子。由此产生的自由电子使等离子体不同于其他物质状态,在其他物质状态下,电子仍然紧紧地与原子核结合在一起。当等离子体中的原子与带负电荷的电子分离时,它们就不再带有中性电荷。相反,原子变成了离子带正电的粒子。因此,等离子体是一种由带正电荷的离子和带负电荷的电子组成的电离状态。极光是由地球大气等离子体中的粒子碰撞形成的。资料来源:弗兰克-奥尔森原子中的电子能够分离并形成等离子体有几个原因。在实验室实验中,科学家可以用高压电、激光或电磁场轰击原子,从而形成等离子体。在太空中,高能光子(包括伽马射线)撞击原子也会形成等离子体。在太空中,当重力使压力剧增,从而使气体过热时,也会形成等离子体。高温使原子相互碰撞,导致电子从原子中分离,形成等离子体和恒星的雏形。气体过热产生等离子体的过程表明,气体和等离子体之间的关系类似于液体是固体的加热形式。这种类比并不总是正确的。首先,与气体不同,等离子体可以导电。此外,在气体中,所有粒子的行为方式都相似。然而,在等离子体中,电子和离子的行为和相互作用方式非常复杂,从而产生了波和不稳定性。等离子体有多种类型。宇宙中的大多数等离子体被研究人员称为高温等离子体。在这些高温等离子体中,温度可以超过华氏 1 万度,所有原子都可以完全电离。低温等离子体则不同。原子只是部分电离,温度低得惊人,甚至只有室温。另一种不寻常的等离子体是高能量密度等离子体,科学家在实验室中制造这种等离子体来研究它们的不寻常特性。总结:有一种闪电球状闪电是等离子体。从马克斯-普朗克研究所了解更多信息。极光也是由等离子体造成的。在本科学集锦中了解更多信息。封闭等离子体是设计聚变托卡马克和恒星器设备的重要步骤,这些设备最终可能为我们提供聚变动力。高能量密度等离子体科学实现了实验室条件下的聚变点火。研究等离子体有助于科学家了解物质。这也有助于他们向聚变能源的目标迈进。能源部(DOE)科学办公室通过聚变能源科学和核物理计划支持等离子体研究。能源部资助的等离子体研究还改进了从手机、电脑到汽车等各种产品中的半导体制造。等离子体方面的专业知识帮助能源部国家实验室的研究人员开发出了逐原子控制半导体制造的方法。编译来源:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是 X 射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?科学简单点:什么是“关键材料” 美国政府定义了多少种? ... PC版: 手机版:

封面图片

新设计大大延长了等离子体火炬的使用寿命

新设计大大延长了等离子体火炬的使用寿命 一项突破性设计将等离子体火炬的使用寿命从数天延长到数年,克服了重大的技术挑战,并可能因其更高的效率和可持续性而给多个行业带来革命性的变化。等离子体割炬是产生热等离子体的设备,因其能有效产生高温等离子体而在各行各业中举足轻重。它可应用于低碳冶金、粉末球化、碳材料制备和先进材料喷涂等多个领域。然而,其有限的使用寿命阻碍了其大规模应用。传统的固定阴极在耗尽后必须更换,导致寿命短、维护成本高。在这项研究中,研究人员开发了一种连续进给阴极系统,可以快速补充已磨损的阴极。这种操作消除了使用寿命的限制,使等离子火焰的运行寿命几乎无限。"设计克服了五大难关,"已经监督这项实验长达 160 个小时的高级工程师李军说,"这包括导电、导热、密封、水冷和连续推进机制。对于传统等离子火焰来说,160 小时标志着结束,但在这里,这仅仅是个开始。"这一重大进步推动了等离子体应用的产业化,开创了一个高效和可持续发展的新时代。编译自:ScitechDaily ... PC版: 手机版:

封面图片

《等离子体物理 》

《等离子体物理 》 简介:研究电离气体在高能状态下的行为与特性,涉及带电粒子间的电磁相互作用及集体运动规律。作为物质第四态,广泛存在于恒星、闪电、人造核聚变装置中,其控制技术对能源开发、航天推进、材料加工等领域具有革命性意义。 亮点:前沿领域聚焦可控核聚变实现清洁能源,星际等离子体研究推动深空探测发展,工业应用涵盖芯片刻蚀与废物处理。基础理论融合流体力学与电磁学,依赖超级计算机进行粒子动力学模拟。 标签:#物质第四态 #电磁流体力学 #核聚变能源 #深空等离子体 #工业应用科技 链接:

封面图片

科学家利用等离子技术实现水净化技术的变革

科学家利用等离子技术实现水净化技术的变革 等离子体是科技界一场名副其实的革命。以前,要在手机等电子设备使用的硅板上雕刻电路,必须使用污染环境的化学产品。现在,使用等离子体可以更干净、更精确地完成这项工作,而且可以使缝隙越来越小,设备也随之越来越小。但等离子体也有其他应用,例如水处理。科尔多瓦大学的 FQM-136 等离子体物理学小组和 FQM-346 有机催化和纳米结构材料小组合作开展了一项研究,目的是通过应用等离子体促进化学过程来消除水中的污染物。为了解决水体中有机污染物日益增多的问题,例如水体中的染料和其他来自农业和工业活动的化合物会破坏生态系统的稳定,这些研究人员选择了等离子体的应用。研究人员弗朗西斯科-罗梅罗(Francisco J. Romero)、胡安-阿马罗(Juan Amaro)和玛丽亚-加西亚(Maria C García)。资料来源:科尔多瓦大学水净化方面的突破2017 年,研究团队首次证明,由向空气开放的微波诱导的氩等离子体在作用于水时,会在水中产生含氧和氮的活性物种(如羟基自由基、过氧化氢、氮自由基),能够消除水的污染。现在,研究人员胡安-阿马罗-加赫特、弗朗西斯科-J-罗梅罗-萨尔盖罗和玛丽亚-C-加西亚已经成功设计出了这种等离子体的反应器,并大大增加了水中产生的这些活性物质的数量,从而可以在短短几分钟内破坏高浓度染料(这里指亚甲基蓝)。这是通过改变 surfatron 的设计实现的,这种金属装置将微波发生器的能量与等离子体混合,以维持等离子体。玛丽亚-加西亚教授解释说:"我们所做的是在石英放电管中放入一小块硅,这样就能产生不同的等离子体,这种等离子体不是丝状的,在与水作用时能更有效地产生活性物种。上述等离子体成分在与水作用时能产生氧化物种,从而降解有机化合物和杀死微生物,这使得该等离子体反应器可用于与水修复相关的应用中。"因此,这种新配置扩大了这类等离子体的适用范围。加西亚教授解释说:"这种设计完全改变了表面加速器产生电磁场以产生等离子体的配置,从而使等离子体具有不同的、更有效的特性,同时也消除了破坏等离子体稳定性的丝状化问题(等离子体柱分成许多丝状)。"等离子去污的未来Francisco J. Romero 教授继续说道:"在等离子体作用下产生的氧化物具有很强的反应性,可以破坏水中的有机物。要做到这一点,等离子体并不是被引入水中。相反,等离子体是远程作用的,因此在水和等离子体之间有一个空气区,在这个空气区中,由于受激物种与氧气、氮气和水蒸气分子之间的碰撞,发生了许多反应,并产生了扩散到液体中并最终与污染物结合的活性物种"。研究员胡安-阿马罗说:"这种新型设计产生的等离子体的去污潜力已经过测试,可以减少水中高浓度的亚甲基蓝染料,在能量方面取得了非常高效的结果,在缩短处理时间的情况下实现了染料的完全消除。"等离子体是一种"第四物质状态",通过向稳定的气体提供能量并将其转化为电离气体而产生,它几乎适用于所有领域:制造微型芯片、表面消毒、伤口愈合、在眼镜上沉积防反射涂层、提高种子发芽率、回收废物、活化塑料表面以提高涂料附着力,以及无数其他应用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国突破黑障通信中国已经建成的“临近空间高速目标等离子体电磁科学实验研究装置”是专门为突破黑障通信技术研制的大型实验装置,投入运

中国突破黑障通信 中国已经建成的“临近空间高速目标等离子体电磁科学实验研究装置”是专门为突破黑障通信技术研制的大型实验装置,投入运行以来在较短的时间内已经在地面实现了从L到Ka频段黑障现象的复现,提出了低频电磁波和动态自适应的抗黑障通信新方法。 实验结果表明:当等离子体覆盖通信天线时,系统能够实时根据驻波检测到等离子体的变化,使通信速率在4Mbps到250bps之间自动切换,换取了约40dB的额外增益,使得通信系统对等离子密度的耐受极限至少提高了一个数量级。 来源 via 标签: #黑障通信 频道: @GodlyNews1 投稿: @Godlynewsbot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人