《等离子体物理 》

《等离子体物理 》 简介:研究电离气体在高能状态下的行为与特性,涉及带电粒子间的电磁相互作用及集体运动规律。作为物质第四态,广泛存在于恒星、闪电、人造核聚变装置中,其控制技术对能源开发、航天推进、材料加工等领域具有革命性意义。 亮点:前沿领域聚焦可控核聚变实现清洁能源,星际等离子体研究推动深空探测发展,工业应用涵盖芯片刻蚀与废物处理。基础理论融合流体力学与电磁学,依赖超级计算机进行粒子动力学模拟。 标签:#物质第四态 #电磁流体力学 #核聚变能源 #深空等离子体 #工业应用科技 链接:

相关推荐

封面图片

科学简单点:什么是等离子体?

科学简单点:什么是等离子体? 在等离子体中,一些电子从中性原子(质子和电子数目相等,因此带中性电荷的原子)中分离出来,成为自由电子。由此产生的自由电子使等离子体不同于其他物质状态,在其他物质状态下,电子仍然紧紧地与原子核结合在一起。当等离子体中的原子与带负电荷的电子分离时,它们就不再带有中性电荷。相反,原子变成了离子带正电的粒子。因此,等离子体是一种由带正电荷的离子和带负电荷的电子组成的电离状态。极光是由地球大气等离子体中的粒子碰撞形成的。资料来源:弗兰克-奥尔森原子中的电子能够分离并形成等离子体有几个原因。在实验室实验中,科学家可以用高压电、激光或电磁场轰击原子,从而形成等离子体。在太空中,高能光子(包括伽马射线)撞击原子也会形成等离子体。在太空中,当重力使压力剧增,从而使气体过热时,也会形成等离子体。高温使原子相互碰撞,导致电子从原子中分离,形成等离子体和恒星的雏形。气体过热产生等离子体的过程表明,气体和等离子体之间的关系类似于液体是固体的加热形式。这种类比并不总是正确的。首先,与气体不同,等离子体可以导电。此外,在气体中,所有粒子的行为方式都相似。然而,在等离子体中,电子和离子的行为和相互作用方式非常复杂,从而产生了波和不稳定性。等离子体有多种类型。宇宙中的大多数等离子体被研究人员称为高温等离子体。在这些高温等离子体中,温度可以超过华氏 1 万度,所有原子都可以完全电离。低温等离子体则不同。原子只是部分电离,温度低得惊人,甚至只有室温。另一种不寻常的等离子体是高能量密度等离子体,科学家在实验室中制造这种等离子体来研究它们的不寻常特性。总结:有一种闪电球状闪电是等离子体。从马克斯-普朗克研究所了解更多信息。极光也是由等离子体造成的。在本科学集锦中了解更多信息。封闭等离子体是设计聚变托卡马克和恒星器设备的重要步骤,这些设备最终可能为我们提供聚变动力。高能量密度等离子体科学实现了实验室条件下的聚变点火。研究等离子体有助于科学家了解物质。这也有助于他们向聚变能源的目标迈进。能源部(DOE)科学办公室通过聚变能源科学和核物理计划支持等离子体研究。能源部资助的等离子体研究还改进了从手机、电脑到汽车等各种产品中的半导体制造。等离子体方面的专业知识帮助能源部国家实验室的研究人员开发出了逐原子控制半导体制造的方法。编译来源:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是 X 射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?科学简单点:什么是“关键材料” 美国政府定义了多少种? ... PC版: 手机版:

封面图片

了解快速离子碰撞:聚变反应堆中的离子和波的“芭蕾舞”

了解快速离子碰撞:聚变反应堆中的离子和波的“芭蕾舞” 核聚变实验中快速离子(黑色螺旋)与等离子体波(彩色)相互作用的示意图。资料来源:史蒂夫-艾伦(劳伦斯-利弗莫尔国家实验室),由迈克-范-泽兰(通用原子公司)改编在等离子体中,"冲浪者"可能是速度非常快的离子,它们可能出现在核聚变装置中,是核聚变反应或用于加热等离子体的其他过程的结果。这些快速离子的作用通常与海洋中的冲浪者相反它们为海浪提供能量,使海浪变大。当共振粒子与波浪交换能量时,它们也会通过随机碰撞受到等离子体中其他粒子的挤压。这些碰撞的类型和发生频率决定了波浪的大小和粒子的晃动程度。如果波浪过大或过多,就会把冲浪粒子踢出装置,对墙壁造成潜在危险,同时也会减少聚变能的产生量。聚变反应堆的挑战聚变反应堆中的等离子体必须不断加热,以保持产生能量所需的温度。然而,加热等离子体的快速离子也会与等离子体中的波产生共振。这会导致这些波的增长,并有可能将快速离子踢出装置。研究人员需要了解快速离子与等离子体波之间的共振相互作用,以预测和减轻任何不利影响。这项研究将数学计算与计算机模拟相结合,揭示了不同类型的碰撞如何通过竞争来决定共振粒子与等离子体波之间的能量传递方式。研究人员正在利用这一新的认识来制定如何保持等离子体足够热以维持核聚变反应的模型。共振波粒等离子体问题还与星系中的某些引力相互作用有关。这意味着该项目的方法可以应用于天体物理研究,包括暗物质研究。了解快速离子碰撞在核聚变实验中,快速离子通过与电子碰撞,将其能量传递给背景等离子体,从而使等离子体保持足够的热量进行核聚变。碰撞有两种不同类型:扩散散射和对流阻力。扩散碰撞与台球桌上的台球散射是同一类型。与此同时,当把手伸出行驶中的汽车窗外时,你会感觉到阻力碰撞。根据快离子的速度和等离子体的温度,每种碰撞都会对快离子的行为产生更大的影响。具体来说,快离子速度越大,阻力越大,而等离子体温度越高,扩散越有利。在快速离子通过碰撞加热背景等离子体的同时,它们也会与等离子体波发生共振作用,而等离子体波会消耗它们的能量,从而有可能冷却等离子体。在没有任何碰撞的情况下,只有当粒子的速度与波的速度完全匹配时,才会发生快离子与波之间的共振。科学家们早就知道,扩散碰撞的作用是"抹去"共振,即使粒子的速度比波的移动速度稍快或稍慢,它们也能有效地与波进行能量交换。这项研究的新发现是,当阻力存在时,这种碰撞会改变共振发生的速度,这意味着当快离子和等离子体波的速度相差很小时,能量交换实际上是最有效的。共振功能的作用在这项研究中,研究人员用一种名为共振函数的数学对象来描述波粒相互作用强度的特征,共振函数取决于波速和粒速之间的差值。当阻力碰撞比扩散碰撞发生得更频繁时,就会出现更奇特的现象在全新的速度下,有效的能量传递成为可能。这种现象实际上产生了新的共振,而在没有阻力的情况下,这种共振是根本不存在的,表现为共振函数中出现新的峰值,并扩大了共振相互作用的范围。完全从理论上推导出的共振函数决定了从共振快离子中获取自由能后波浪会变得有多大,也决定了这些粒子会如何被波浪踢来踢去。非线性计算机模拟结果与理论预测非常吻合,证实了推导出的共振函数对这两种碰撞的任何组合都是有效的,并加深了我们对碰撞如何影响等离子体中共振波与粒子相互作用的基本理解。基本理论得到验证后,现在可以放心地将其用于改进用于模拟快速离子在聚变装置中的行为的代码,这是开发商业聚变发电厂道路上的关键一步。编译自/ScitechDaily ... PC版: 手机版:

封面图片

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能量。 欧洲核聚变研发创新联盟(EUROfusion)、英国原子能管理局(UKAEA)和国际热核聚变实验堆(ITER)9日联合召开新闻发布会公布了上述消息。打破了JET曾在1997年产生约22兆焦耳聚变能量的等离子体的世界能源纪录。 为了过渡到国际大规模聚变实验(ITER)计划,研究人员此次进行的是氘氚混合燃料聚变实验。同时,为了使JET实验尽可能接近未来的热核聚变实验堆条件,他们用铍和钨的混合物而不是碳覆盖等离子体容器壁,因为金属钨比碳更耐腐蚀,而且不会像碳一样过多地与燃料结合。此次实验在比太阳中心温度高10倍的条件下,产生的聚变能量达到了创纪录水平。 ITER设施目前正在法国南部的卡达拉奇建设,预计将使用氘和氚混合燃料,计划实现产出能量10倍于输入能量(聚变增益)。要想产生净能量,即输出能量是加热等离子体所需能量的两倍这一目标,在卡达拉奇ITER设施“上线”之前是不可能实现的。因此,这次实验是在类ITER条件下创造的世界纪录。 德国马克斯·普朗克等离子体物理学研究所科学主任西比勒·君特教授表示:“JET的最新实验是向ITER最终目标迈出的重要一步。” (科技日报)

封面图片

中核集团:中国掌握可控核聚变高约束先进控制技术

中核集团:中国掌握可控核聚变高约束先进控制技术 8月25日下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。  为实现聚变能源,需要提升等离子体综合参数至聚变点火条件。磁约束核聚变中的高约束模式(H模)是一种典型的先进运行模式,被选为正在建造的国际热核聚变试验堆(ITER)的标准运行模式,能够有效提升等离子体整体约束性能,提升未来聚变堆的经济性,相较于普通的运行模式,其等离子体综合参数可提升数倍。

封面图片

《等离子体物理》 | 简介:等离子体物理这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深

《等离子体物理》 | 简介:等离子体物理这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深度和思考。每一页都充满了智慧和启发,是对知识渴望者的不二之选。 | 标签:#书籍 #等离子 #阅读 | 文件大小:NG | 链接:

封面图片

科学家利用等离子技术实现水净化技术的变革

科学家利用等离子技术实现水净化技术的变革 等离子体是科技界一场名副其实的革命。以前,要在手机等电子设备使用的硅板上雕刻电路,必须使用污染环境的化学产品。现在,使用等离子体可以更干净、更精确地完成这项工作,而且可以使缝隙越来越小,设备也随之越来越小。但等离子体也有其他应用,例如水处理。科尔多瓦大学的 FQM-136 等离子体物理学小组和 FQM-346 有机催化和纳米结构材料小组合作开展了一项研究,目的是通过应用等离子体促进化学过程来消除水中的污染物。为了解决水体中有机污染物日益增多的问题,例如水体中的染料和其他来自农业和工业活动的化合物会破坏生态系统的稳定,这些研究人员选择了等离子体的应用。研究人员弗朗西斯科-罗梅罗(Francisco J. Romero)、胡安-阿马罗(Juan Amaro)和玛丽亚-加西亚(Maria C García)。资料来源:科尔多瓦大学水净化方面的突破2017 年,研究团队首次证明,由向空气开放的微波诱导的氩等离子体在作用于水时,会在水中产生含氧和氮的活性物种(如羟基自由基、过氧化氢、氮自由基),能够消除水的污染。现在,研究人员胡安-阿马罗-加赫特、弗朗西斯科-J-罗梅罗-萨尔盖罗和玛丽亚-C-加西亚已经成功设计出了这种等离子体的反应器,并大大增加了水中产生的这些活性物质的数量,从而可以在短短几分钟内破坏高浓度染料(这里指亚甲基蓝)。这是通过改变 surfatron 的设计实现的,这种金属装置将微波发生器的能量与等离子体混合,以维持等离子体。玛丽亚-加西亚教授解释说:"我们所做的是在石英放电管中放入一小块硅,这样就能产生不同的等离子体,这种等离子体不是丝状的,在与水作用时能更有效地产生活性物种。上述等离子体成分在与水作用时能产生氧化物种,从而降解有机化合物和杀死微生物,这使得该等离子体反应器可用于与水修复相关的应用中。"因此,这种新配置扩大了这类等离子体的适用范围。加西亚教授解释说:"这种设计完全改变了表面加速器产生电磁场以产生等离子体的配置,从而使等离子体具有不同的、更有效的特性,同时也消除了破坏等离子体稳定性的丝状化问题(等离子体柱分成许多丝状)。"等离子去污的未来Francisco J. Romero 教授继续说道:"在等离子体作用下产生的氧化物具有很强的反应性,可以破坏水中的有机物。要做到这一点,等离子体并不是被引入水中。相反,等离子体是远程作用的,因此在水和等离子体之间有一个空气区,在这个空气区中,由于受激物种与氧气、氮气和水蒸气分子之间的碰撞,发生了许多反应,并产生了扩散到液体中并最终与污染物结合的活性物种"。研究员胡安-阿马罗说:"这种新型设计产生的等离子体的去污潜力已经过测试,可以减少水中高浓度的亚甲基蓝染料,在能量方面取得了非常高效的结果,在缩短处理时间的情况下实现了染料的完全消除。"等离子体是一种"第四物质状态",通过向稳定的气体提供能量并将其转化为电离气体而产生,它几乎适用于所有领域:制造微型芯片、表面消毒、伤口愈合、在眼镜上沉积防反射涂层、提高种子发芽率、回收废物、活化塑料表面以提高涂料附着力,以及无数其他应用。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人