他耗资4000万美元造出新细菌 又想创造新生命

他耗资4000万美元造出新细菌 又想创造新生命 只有当我们能够去创造生命的时候,才可能真正理解生命的本质,这也是生命科学领域研究一直想要做到的事。那么,我们该如何去创造生命?生命科学领域中的一个基本规则是“中心法则”,即遗传信息可以从 DNA 复制自身,同时也可以传递给 RNA,并由RNA传递给蛋白质,完成遗传信息的转录和翻译过程,这个过程就是创造生命的过程。因此从理论上说,只要我们能够创造出 DNA,就有可能实现人工创造生命,进而深入理解生命的本质。人类的“人造生命”发展史人造生命是指从其他生命体中提取基因,建立新的人工染色体,随后将其转入已被剔除了遗传物质的细胞中,最终由这些人工染色体控制这个细胞,发育变成新的生命体。人造生命的发展历程虽然较短,却充满着创新和突破。1953 年,沃森和克里克提出了著名的 DNA 双螺旋结构模型,从此开启了分子生物学时代。到了 20 世纪 70 年代,赫伯特·博耶和斯坦利·科恩分别实现了限制性内切酶对双链 DNA 的剪切,以及质粒 DNA 到大肠杆菌的转入,这两项创新成果标志着基因工程的诞生。随后,桑格发明的 DNA 测序技术实现了 DNA 序列的精确“阅读”。接着,保罗·伯格和沃尔特·吉尔伯特通过开发分子克隆技术,进一步促进了重组 DNA 技术的发展。这些突破性的技术都为人造生命的研究奠定了重要基础。其中,2010 年 5 月由美国生物学家克雷格·文特尔团队取得的成就标志着人造生命领域的一次重大突破。他们在实验室中通过化学合成了一整个基因组,随后将这个合成基因组植入到一个空细胞中。这个细胞随后根据植入的基因指令开始自我复制和增殖,最终形成新的细胞。尽管有些科学家持有保留意见,认为文特尔的成果只是以一个自然的、先前存在的残留细胞为基础的,并没有创造出真正的生命,但他的实验仍然证明了人造基因组可以为细胞提供动力,这为未来真正的人造生命提供了重要的启示。人造生命的科学狂人:克雷格·文特提到人造生命,就不得不提这一领域的泰斗、科学狂人克雷格·文特。他是美国著名的生物学家和企业家,以在科学界的重大成就而闻名。他的成就包括“一人单挑六国科学家,完成人类基因组计划”和“制造新生物”,这两项工作都是震撼全世界科学界的突破。“科学狂人”克雷格·文特(图片来源:克雷格·文特研究所官网主页)20 世纪 90 年代,由美国、英国、法国、德国、日本和中国等 6 个国家的顶级科学家共同参与人类基因组计划,预计花费 30 亿美元来完成人类基因组测序。然而,当时间和花费过半时,他们却仅完成了 3% 的测序工作。与此同时,克雷格·文特成立了塞莱拉基因公司,一个私营性质的基因研究机构,开发了如“霰弹枪”的新型测序技术,并迅速追上了多国合作小组的进度。后来,克雷格·文特与六国科学家合作,于 2001 年初成功完成了人类基因组草图。在人类基因组计划完成后,克雷格·文特很快就有了新的理想,这个理想可能是生命科学的终极目标:创造新的生命形式。克雷格·文特计划利用 DNA 小片段,合成新的基因组,并将其转入已经被剔除了本身基因组的细菌之中,观察这微小的细菌能否进行新陈代谢和繁殖。经过研究团队十几年不懈的努力,耗资超过 4000 万美元,克雷格·文特研究团队终于在 2010 年创造出全新的细菌。克雷格·文特认为,“这是地球上第一个,父母是电脑却可以进行自我复制的物种。”目前,克雷格·文特又展开了一系列新的研究,他把自己的游艇改装成研究船,带领团队成员远征百慕大群岛附近的马尾藻海,希望就地取材,绘制出该海域生态系统中所有微生物的基因组图谱。克雷格·文特的终极目标是利用海洋中寻找到的基因,设计出全新的生命形式。这些生命将具备捕获二氧化碳、遏制温室效应的能力,还能清理核废料,并产生大量氢原子。这项全新生命形式的发展将有望改变全球能源经济的现状。克雷格·文特的研究旅程从人类基因组测序,到人工合成细菌,再到从海洋中寻找有益基因以设计全新生命,始终贯穿一个主线:从基因到生命。无论是认识基因、合成基因,或是寻找新基因,克雷格·文特所有研究都是为创造生命绘制蓝图,最终实现人造生命的使命,回答了“科学真的可以创造生命”这一重要命题。酵母人工染色体合成的突破之路细菌和酵母分别是原核和真核生物的典型代表,能够合成这两者的基因组,就能为合成生命奠定重要的理论基础,丰富人造生命的知识储备。作为原核生物的细菌,科学家合成其基因组并创造全新的生命尚且花费了十几年的时间。那么作为真核生物的酵母,其基因组有 16 条染色体,合成的复杂性和难度可想而知。为此,国际上发起了酵母基因组合成计划(Sc2.0),这是人类首次尝试对真核生物的基因组进行从头设计合成,旨在重新设计并合成酿酒酵母全部 16 条染色体。该项目于 2011 年启动,由来自中国、美国、英国、新加坡、澳大利亚等国的超过 200 位科学家共同参与。研究人员在从头合成酵母基因组序列的过程中面临了诸多挑战。由于酵母基因组中存在大量重复序列,他们去除了转座子和重复元件,并重新编码终止密码子。同时,研究人员对基因序列进行了碱基删除、插入和替换的工作,确保合成菌株与天然菌株的表型相同的同时,也保证了基因组的稳定性。2017 年《Science》封面展示的酵母基因组结构模型,其中金色代表已经完成全合成的染色体;白色代表天然染色体 (图片来源:《Science》官网)根据以上原则和标准,2014 年,纽约大学的 Jef Boeke 教授领衔的研究团队成功创建出了第一条人工酵母染色体最小的 3 号染色体。这一成果开启了真核生物基因组合成的先河。到 2017 年,Sc2.0 团队完成了人工合成酵母基因组 16 条染色体中的 5 条,其中 4 条由中国科学家完成。具体来说,天津大学元英进院士团队负责了 5 号和 10 号染色体的合成;清华大学戴俊彪研究员团队负责 12 号染色体的设计合成;华大基因杨焕明院士团队负责酵母 2 号染色体的从头设计与全合成。到了 2023 年,Sc2.0 计划迎来新的里程碑式突破,华大基因沈玥研究员团队完成酵母 7 号和 13 号染色体的从头设计与全合成,以及 tRNA 新染色体的构建。这标志着酵母的全部 16 条染色体的合成工作已圆满完成。此外,该团队还成功构建了一种包含 50%合成 DNA 的酵母菌株,这种酵母菌株不仅能够活跃增殖,还展现了正常的细胞形态、长度和形状。2023 年《Cell》发表文章描述了酵母染色体的整合过程:将含有不同合成染色体的酵母细胞进行杂交,在后代中寻找携带两条合成染色体的个体,经过漫长的杂交过程,科学家们逐渐将他们先前合成的所有染色体(6 条完整染色体和 1 条染色体臂)整合到同一个细胞中(图片来源:参考文献[5])参与酵母基因组合成计划的中国科学家代表,从左到右依次为:李炳志、戴俊彪、杨焕明、元英进、沈玥(图片来源:人民日报)人造细胞再升级:逼近真实活细胞人工合成细菌和酵母主要解决基因组合成的问题,然而活细胞执行功能主要还是依靠蛋白质。2024 年 4 月 23 日,美国科学家在《自然·化学》(Nature Chemistry)杂志上发表了一项最新研究成果,他们通过操纵 DNA 和蛋白质,创造出类似人体细胞的人造细胞,这一成果对再生医学、药物输送和诊断工具等领域具有重要意义。细胞支架是细胞内部的重要支架结... PC版: 手机版:

相关推荐

封面图片

【豆瓣8.6 科普】《基因组-人类自传》本书通过在每一对染色体上选择一个新近发现的基因并讲述其故事,马特·里德利叙述了我们这个物

【豆瓣8.6 科普】《基因组-人类自传》本书通过在每一对染色体上选择一个新近发现的基因并讲述其故事,马特·里德利叙述了我们这个物种及祖先从生命出现之初到未来医学边缘的历程。他探讨了由于基因组的图谱绘制而出现的科学、哲学等问题。

封面图片

巨猿研究揭示 Y 染色体比 X 染色体进化更快

巨猿研究揭示 Y 染色体比 X 染色体进化更快 猿类性染色体研究来自宾夕法尼亚州立大学、美国国家人类基因组研究所和华盛顿大学的一个国际研究小组为五个类人猿物种和一个较小类人猿物种的性染色体制作了完整的"端对端"参考基因组。他们的研究揭示了雄性特异性 Y 染色体的快速进化变化。这些发现加深了我们对性染色体进化的理解,有助于我们了解影响类人猿和人类的遗传疾病。类人猿中 Y 和 X 染色体的重要性"Y染色体对人类的生育能力非常重要,而X染色体则蕴藏着对生殖、认知和免疫至关重要的基因,"宾夕法尼亚州立大学生命科学维恩-威拉曼讲座教授、生物学教授兼研究小组组长卡捷琳娜-马科娃(Kateryna Makova)说。"我们的研究为今后研究性染色体、它们如何进化以及与之相关的疾病打开了大门。我们研究的非人类巨猿物种都濒临灭绝。获得它们完整的性染色体序列将有助于研究它们在野外的性别特异性散布及其对繁殖和生育的重要基因"。宾夕法尼亚州立大学和美国国家人类基因组研究所的研究人员领导的一项国际合作新生成了六个灵长类物种的性染色体的完整基因组,揭示了类人猿Y染色体的快速进化。这些结果可以为保护这些濒危物种提供信息,并揭示人类和我们近亲中与性有关的遗传疾病。图片来源:设计:鲍勃-哈里斯;摄影:圣地亚哥动物园和塔尔萨动物园从 Y 染色体变异性看进化的启示这种参考基因组是一个具有代表性的例子,有助于今后对这些物种的研究。研究小组发现,与 X 染色体相比,Y 染色体在不同猿类物种之间的差异很大,而且含有许多物种特有的序列。然而,它仍然受到纯化自然选择的影响这种进化力量通过清除有害突变来保护其遗传信息。这项新研究最近发表在《自然》杂志上。基因组测序的技术进步马科瓦说:"2001年,研究人员对人类基因组进行了测序,但实际上并不完整。当时可用的技术意味着某些空白没有被填补,直到2022-23年由端粒到端粒(Telomere-to-Telomere,简称T2T)联盟领导的一项新的努力。我们利用人类T2T联盟开发的实验和计算方法,确定了我们在世近亲类人猿性染色体的完整序列。"类人猿的比较基因组学研究小组为五种类人猿黑猩猩、倭黑猩猩、大猩猩、婆罗洲猩猩和苏门答腊猩猩以及一种较小的类人猿暹罗猿制作了完整的性染色体序列。他们为每个物种的一个个体生成了序列。生成的参考基因组可作为基因和其他染色体区域的图谱,帮助研究人员对该物种其他个体的基因组进行测序和组装。这些物种以前的性染色体序列不完整,或者婆罗洲猩猩和暹罗猩猩的性染色体序列不存在。该研究的共同第一作者、宾夕法尼亚州立大学博士后研究员 Karol Pál 说:"Y 染色体的测序一直是个挑战,因为它包含许多重复性区域,而且由于传统的短线程测序技术是在短时间内对序列进行解码,因此很难将得到的片段按照正确的顺序排列。T2T方法使用长读数测序技术,克服了这一难题。我们与美国国家卫生与遗传研究所(NHGRI)的亚当-菲利皮(Adam Phillippy)研究小组合作,结合计算分析的进步,使我们能够完全解决以前难以测序和组装的重复区域。通过比较 X 染色体和 Y 染色体之间以及不同物种之间的差异,包括与之前生成的人类 X 染色体和 Y 染色体的 T2T 序列的差异,我们了解到了有关它们进化的许多新情况。"Y 染色体的高变异性宾夕法尼亚州立大学医学基因组学中心主任马科瓦说:"性染色体开始时与其他任何一对染色体一样,但 Y 染色体由于在其大部分长度上不与其他染色体交换遗传信息,因此在积累许多缺失、其他突变和重复元素方面一直独树一帜。"因此,研究小组发现,在六个猿类物种中,Y 染色体在包括大小在内的各种特征上的变化要比 X 染色体大得多。在所研究的猿类中,X 染色体的大小从黑猩猩和人类的 1.54 亿个 ACTG 字母(代表组成DNA的核苷酸)到大猩猩的 1.78 亿个字母不等。相比之下,Y染色体的大小从暹罗猩猩的3000万个DNA字母到苏门答腊猩猩的6800万个字母不等。例如,人类和黑猩猩之间约有 98% 的 X 染色体是一致的,但它们之间只有约三分之一的 Y 染色体是一致的。研究人员发现,部分原因是 Y 染色体更有可能被重新排列或部分遗传物质被复制。此外,在 Y 染色体上,重复序列所占染色体的百分比变化很大。根据物种的不同,重复元素占 X 染色体的 62% 到 66%,而占 Y 染色体的 71% 到 85%。与人类基因组中的其他染色体相比,X 和 Y 染色体上的这些百分比都更高。Y 染色体生存策略马科瓦说:"我们发现猿猴的Y染色体正在缩小,积累了许多突变和重复,并丢失了基因。那么,为什么Y染色体没有像以前的一些假说所说的那样消失呢?我们与坦普尔大学的谢尔盖-科萨科夫斯基-庞德等人合作发现,Y染色体上仍有许多基因在净化选择一种保持基因序列完整的自然选择下进化。其中许多基因对精子发生非常重要。这意味着 Y 染色体不可能很快消失。"研究人员发现,Y 染色体上的许多基因似乎采用了两种生存策略。第一种是利用基因冗余染色体上存在同一基因的多个拷贝这样基因的完整拷贝就能补偿可能发生突变的拷贝。研究小组首次完成了猿类性染色体上多拷贝基因家族的图谱,从而量化了这种基因冗余。第二种生存策略是利用回文,即 DNA 字母表中的字母序列后跟有相同但倒置的序列,例如 ACTG-GTCA。当基因位于回文染色体内时,就能从回文染色体纠正突变的能力中获益。帕尔说:"我们发现,Y染色体可以在两个回文染色体臂的重复序列之间与自身交换遗传信息。当同一基因的两个拷贝位于回文染色体内,其中一个拷贝发生突变时,可以通过与另一个拷贝进行基因交换来挽救突变。这可以弥补Y染色体与其他染色体遗传信息交换的不足。"研究小组还首次获得了猿类性染色体上回文染色体的完整序列,因为以前很难对它们进行测序和研究。他们发现,猿猴 Y 染色体上的回文染色体特别多而且特别长,但它们通常只在近亲物种之间共享。猿类基因组研究的进展研究人员还与约翰-霍普金斯大学的迈克尔-沙茨及其团队合作,对 129 只大猩猩和黑猩猩的性染色体进行了研究,以更好地了解每个物种内部的遗传变异,并寻找自然选择和其他进化力量作用于它们的证据。宾夕法尼亚州立大学生物学助理教授、论文作者之一 Zachary Szpiech 说:"通过将大猩猩和黑猩猩的性染色体测序读数与我们的新参考序列进行比对,我们从之前研究过的大猩猩和黑猩猩个体中获得了大量新信息。虽然未来增加样本量将非常有助于提高我们检测不同进化力量特征的能力,但在与濒危物种合作时,这在伦理和后勤方面都可能具有挑战性,因此我们能最大限度地利用现有数据是至关重要的。"研究人员探索了能够解释大猩猩内部和黑猩猩内部 Y 染色体变异的各种因素,这一分析揭示了 Y 染色体上净化选择的额外特征。对未来研究和保护工作的影响宾夕法尼亚州立大学生物学助理教授克里斯蒂安-胡贝尔(Christian Huber)是这篇论文的作者之一,他说:"我们将生物信息学技术和进化分析有力地结合在一起,使我们能够更好地解释我们的近亲类人猿性染色体的进化过程。"此外,我们制作的参考基因组将有助于未来对灵长类进化和人类疾病的研究。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出形成人类人工染色体的新技术

科学家开发出形成人类人工染色体的新技术 能在人体细胞内发挥作用的人造人类染色体有可能彻底改变基因疗法包括某些癌症的治疗方法,并有许多实验室用途。然而,巨大的技术挑战阻碍了它们的发展。现在,宾夕法尼亚大学佩雷尔曼医学院研究人员领导的团队在这一领域取得了重大突破,有效地绕开了一个常见的绊脚石。在最近发表在《科学》(Science)杂志上的一项研究中,研究人员解释了他们是如何设计出一种高效技术,利用单个长的设计DNA构建体来制造HACs的。以前制造 HACs 的方法一直受到以下事实的限制:用于制造 HACs 的 DNA 构建体往往会以不可预测的长序列和不可预测的重排方式连接在一起"多聚化"。新方法可以更快、更精确地制作 HAC,从而直接加快 DNA 研究的速度。假以时日,再加上有效的传输系统,这项技术就能为癌症等疾病带来更好的工程细胞疗法。全面改造 HAC 设计宾夕法尼亚大学生物化学与生物物理学埃尔德里奇-里夫斯-约翰逊基金会教授本-布莱克(Ben Black)博士说:"从根本上说,我们彻底改变了HAC设计和输送的旧方法。我们制造的 HAC 对于生物技术应用的最终部署非常有吸引力,例如,需要对细胞进行大规模基因工程的应用。另外一个好处是,它们与天然染色体同时存在,而无需改变细胞中的天然染色体。"首批人工染色体组是 25 年前开发的,人工染色体组技术在细菌和酵母等低等生物较小、较简单的染色体方面已经非常先进。而人类染色体则是另一回事,这主要是因为人类染色体的体积更大,中心粒(即 X 型染色体臂连接的中心区域)更复杂。研究人员已经能够用添加到细胞中的自连接DNA长度来形成小型的人造人类染色体,但这些DNA长度的多聚体具有不可预测的组织和拷贝数这使它们的治疗或科学用途变得复杂,而且由此产生的HAC有时甚至最终结合了宿主细胞中的天然染色体位点,使对它们的编辑变得不可靠。在他们的研究中,宾夕法尼亚大学医学院的研究人员通过多种创新设计出了改进的 HAC:其中包括含有更大、更复杂中心粒的更大初始 DNA 构建体,这使得 HACs 能够从这些构建体的单个拷贝中形成。在向细胞递送时,他们使用了一种基于酵母细胞的递送系统,该系统能够携带更大的载荷。布莱克说:"例如,我们没有试图抑制多聚化,而是绕过了这个问题,增加了输入 DNA 构建的大小,使其自然倾向于保持可预测的单拷贝形式。"研究人员的研究表明,与标准方法相比,他们的方法能更有效地形成有活力的 HAC,并能产生在细胞分裂过程中能自我繁殖的 HAC。优势和未来应用人工染色体的潜在优势有很多假定它们可以很容易地输送到细胞中,并像天然染色体一样运作。与基于病毒的基因递送系统相比,人工染色体将为表达治疗基因提供更安全、更高效、更持久的平台,而基于病毒的基因递送系统可能会引发免疫反应,并涉及有害的病毒插入天然染色体。细胞中正常的基因表达还需要许多局部和远距离的调控因子,而这些因子几乎不可能在类似染色体的环境之外进行人工复制。此外,人工染色体与相对狭窄的病毒载体不同,它允许表达大型、合作性的基因组合,例如构建复杂的蛋白质机器。布莱克预计,他的研究小组在这项研究中采用的同样广泛的方法将有助于为其他高等生物制造人工染色体,包括用于农业应用的植物,如抗虫、高产作物等。编译自:ScitechDaily ... PC版: 手机版:

封面图片

4.7万年前智人和尼安德特人疯狂杂交 科学家却发现Y染色体有点不对

4.7万年前智人和尼安德特人疯狂杂交 科学家却发现Y染色体有点不对 只有一条染色体除外,那就是Y染色体,尼安德特人的Y染色体在现代智人中完全找不到。那么,有趣的问题是,尼安德特人的 Y 染色体到底怎么了?尼安德特人的基因组大约76.5万至55万年前,尼安德特人和现代智人祖先在非洲各奔东西。当时,尼安德特人迁徙到欧洲,而现代智人的祖先则留在了原地。在13万到11万年前,现代智人的祖先第一次走出非洲,但这次迁徙以失败告终,并最终在近东地区逐渐消失。直到5 万至4万年前,现代智人再次迁徙到欧洲和亚洲。现代智人的重大转变被认为发生在7万年前前后变得有别于其它人属物种,所以这次迁徙直接让尼安德特人消失在了历史舞台。得益于保存完好的欧洲和亚洲尼安德特人骨骼和牙齿的DNA,科学家已经恢复了完整的男性和女性尼安德特人的基因组副本。不出所料,尼安德特人的基因组与我们非常相似,他们同样包含约20000多个基因,捆绑在23条染色体上。另一方面,他们也有22对常染色体两个副本分别来自父母,还有一对性染色体,女性拥有两条X染色体,而男性则拥有一条X染色体和一条Y染色体。科学家有许多方法在智人的基因组中寻标记到尼安德特人的DNA序列片段,所以我们现在知道,除起源于非洲的人类谱系外,现在所有人的体内都包含有尼安德特人的基因。其中,欧洲起源的人类谱系的基因组中包含了2%的尼安德特人基因系列,而亚洲和印度的谱系比例还会更高一点。不过,尼安德特人的基因似乎正在被我们逐渐剔除,因为已知一些古代智人基因组中含有的尼安德特人 DNA 序列更多,有些达到6%左右。也正因为我们知道什么基因来自尼安德特人,所以我们知道哪些特征是尼安德特人带给我们的。其中包括红头发等外表特征,还有关节炎、狼疮等疾病都与尼安德特人的基因有关,当然他们的基因也带给了我们对许多疾病的抵抗力。但是,所有这些基因都与Y染色体无关,目前没有发现现代智人携带尼安德特人Y染色体的任何部分。Y染色体很难测序,因为它含有大量重复的“垃圾DNA”,因此尼安德特人的Y染色体基因组仅进行了部分测序。科学家在已测序的尼安德特人Y染色体上发现了现代智人Y 染色体中几种相同基因的样本,但没有在现代智人的Y染色体上发现尼安德特人的部分。值得一提的是,在现代人类中,一个名为SRY的Y染色体基因启动了男性的发育,SRY基因在所有猿类中都发挥着这一作用,或许也包括尼安德特人,但目前还没有发现尼安德特人的SRY基因。尼安德特人的 Y 染色体怎么了?其实,有许多原因都会导致尼安德特人的Y染色体在今天不出现在现代智人身体中。有人认为,尼安德特人的Y 染色体从未出现在跨物种杂交中,因为只有现代智人的男性爱上(或者其它暴力手段)尼安德特女性,而没有尼安德特人男性爱上现代智人女性。不过,这个想法很难与现代人类中没有尼安德特人线粒体DNA的痕迹(仅限于女性系)的发现相协调。也有人认为,由于尼安德特人种群数量非常少,所以拥有有害基因积累的可能性非常高,所以尼安德特人的 Y 染色体在工作方面不如其竞争对手智人那么出色。由于那些带有特别有用的基因的 Y 染色体(比如产生更多、更好或更快的精子)会迅速取代群体中的其他 Y 染色体,所以随着时间推移,尼安德特人的Y染色体基因组在现代智人中完全消失。另外,考虑到人类的 Y 染色体总体上正在退化,所以也可能尼安德特人的 Y 染色体中 SRY 基因已经丢失,他们靠其它方式决定性别,所以他们的Y染色体远没有现代智人的有用,也就逐渐就消失了。还有一种最有可能的原因,就是尼安德特人的Y染色体无法与现代人类其他染色体上的基因一起工作,导致带有Y染色体的混血不育。狮虎兽在物种杂交中,如果有一方不育、罕见或不健康,那么它基本都是具有不同性染色体的那一方。这个被称为霍尔登法则,比如在哺乳动物中,雄性拥有XY染色体,那么雄性杂交后代不健康或不育的比例就更高;而在鸟类中,雄性有ZZ染色体,雌性有ZW染色体,所以它们是雌性杂交后代不健康或不育的比例就更高。霍尔登法则的具体原因还不是很明确,但是它确实普遍影响生物,例如你可能知道狮子和老虎杂交的狮虎兽,它们雌性有生育能力,但雄性都不育,就是这种情况。携带尼安德特人Y染色体的混血不生儿子或者根本就不生孩子,那么Y染色体自然就会消失了。尼安德特人到底如何灭绝的?你会发现,无论出于哪种原因,碰到现代智人并与之杂交后,尼安德特人自己的繁育肯定出了巨大的问题。他们要么因为可生育人口减少了被现代智人占有,要么因为混血不育或者有害基因的存在被淘汰,总之碰到现代智人之后,他们种群肯定是萎缩了,这对于本身就人丁凋落的他们来说是雪上加霜。每个人都想知道尼安德特人是如何灭绝的,其实现在有一个认可度较高的原因,那就是他们真的生育出现了问题。尼安德特人和现代智人在欧洲共同生活了4000-10000年,2019年一项研究指出,这个重叠的时间要远长于现代智人通过战争或流行病等方式灭绝尼安德特人所需的时间。这项研究还指出,只要生育率略有下降,那么随着时间推移,这种积累就会成为他们最终走向灭绝的重要因素。其实,不仅现代智人通过这种“基因污染”的方式让尼安德特人最终灭亡,现在许多强势的入侵物种也都是这么做的。我们知道入侵物种通常会和本土相同生态位上的物种存在资源的竞争,这通常被认为是本土物种灭绝的主要原因。其实,对于许多物种来说,基因污染也是相当关键,甚至可能就是摧毁一个物种的最后一根稻草。报道原文: ... PC版: 手机版:

封面图片

“基因程序”让所有植物的祖先征服了旱地

“基因程序”让所有植物的祖先征服了旱地 哥廷根大学培养的两株 Zygnema。C 表示叶绿体,N 表示细胞核,P 表示类核。单细胞丝含有两个叶绿体和一个细胞核。现在,在内布拉斯加-林肯大学的领导下,一个由来自全球 20 个研究机构的 50 名科学家组成的团队绘制了四株古老的Zygnema藻类的基因组图谱,揭开了最早陆地植物的基因创新之路。内布拉斯加大学林肯分校的计算生物学家、该研究的共同通讯作者尹彦斌说:"这是一个进化的故事。它回答了最早的陆生植物是如何从水生淡水藻类进化而来这一根本问题。"基因组测序是确定生物体完整遗传物质(DNA)的过程,并将其组装成一个可计算的表示形式。它为研究物种进化和了解遗传多样性提供了宝贵的资源。如果全基因组测序是在基因所在的染色体水平上进行的,则会更有用。绘制海藻基因组图谱揭示了陆生植物的进化过程 Klára Plíhalová/Wikimedia CommonsCC BY-SA 4.0研究人员利用德克萨斯大学奥斯汀分校的藻类培养库中的两个样株和德国哥廷根大学的两个样株,组建了四个多细胞藻类样株。Zygnema属于淡水和半陆生藻类Zygnematophyceae(双星藻属),有4000多个已描述的物种,能适应紫外线、极端干燥和冰冻等极端压力。陆生植物的一个显著特点是它们的多细胞体。多细胞基因与对环境压力的反应密切相关,为植物的适应性奠定了基础。研究人员利用尖端的DNA测序技术,生成了完整的染色体级藻类基因组。通过将这些基因组与其他植物和藻类的基因组进行比较,研究人员发现了双星藻属的基因创新。他们发现了涉及生长和发育、细胞分裂、细胞壁生物合成和重塑的"基因程序",以及由环境线索触发的基因。基因的共同表达表明,它们共同感知环境并相应地调节植物生长。"我们的基因网络分析揭示了基因的共同表达,特别是那些在陆生植物和裸子植物最后的共同祖先中扩展和获得的细胞壁合成和重塑基因,"Yin说。"我们揭示了平衡环境响应和多细胞细胞生长机制的深层进化根源"。研究人员说,他们的发现将引发进一步的研究,这对生物能源、水的可持续性和碳封存都有重要意义。哥廷根大学的共同通讯作者扬-德-弗里斯(Jan de Vries)说:"我们不仅为整个植物科学界提供了宝贵的高质量资源,使他们现在可以探索这些基因组数据,而且我们的分析还发现了环境反应之间错综复杂的联系。"这项研究发表在《自然遗传学》杂志上。 ... PC版: 手机版:

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有 23 对一半来自母亲,一半来自父亲,包括性染色体 X 和 Y即总共 46 对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量92 条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(Sergi Regot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(Connor McKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明 DNA 正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种 CDK 在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现 CDK 4 和 CDK 6 的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK 2 也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约 90% 的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有 5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止 APC 在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人