新研究揭示地球淡水出现的时间比以前认为的早5亿年

新研究揭示地球淡水出现的时间比以前认为的早5亿年 科廷大学(Curtin University)领导的新研究发现,有证据表明,对生命至关重要的淡水是在大约 40 亿年前出现在地球上的,这比以前认为的要早一亿年。主要作者、科廷大学地球与行星科学学院兼职研究员、阿联酋哈利法大学助理教授哈迈德-加马勒迪恩(Hamed Gamaleldien)博士说,通过分析西澳大利亚中西部地区杰克山(Jack Hills)的古老晶体,研究人员将淡水出现的时间线推后到了地球形成后的几亿年。Gamaleldien 博士说:"我们能够确定水文循环起源的日期,水文循环是水在地球上流动的连续过程,对于维持生态系统和支持地球上的生命至关重要。通过研究矿物锆石微小晶体中的年龄和氧同位素,我们发现了远在40亿年前的异常轻同位素特征。这种轻的氧同位素通常是地球表面下几公里处的高温淡水改变岩石的结果。地球深处淡水的证据挑战了现有理论,即地球在 40 亿年前完全被海洋覆盖"。科廷大学的雨果-奥利鲁克(Hugo Olierook)博士与一块来自西澳大利亚杰克山的岩石,其中包含本研究中分析的锆石晶体。资料来源:科廷大学研究报告的合著者、科廷大学地球和行星科学学院的雨果-奥利罗克博士说,这一发现对于了解地球是如何形成以及生命是如何出现的至关重要。"这一发现不仅揭示了地球的早期历史,还表明陆地和淡水在相对较短的时间内地球形成后不到6亿年为生命的繁衍创造了条件。标志着我们在了解地球早期历史方面迈出了重要一步,并为进一步探索生命起源打开了大门"。编译来源:ScitechDaily作者是科廷大学地球与行星科学学院地球动力学研究小组和矿物系统时间尺度小组以及约翰-德-莱特中心的成员。部分研究是利用约翰-德莱特中心大型几何离子微探针(LGIM)设施中的CAMECA 1300HR3仪器完成的,该设施由 AuScope(通过联邦国家合作研究基础设施战略)、西澳大利亚地质调查局和科廷大学资助。 ... PC版: 手机版:

相关推荐

封面图片

研究发现30亿年前的地幔温度升高热使地球地壳“年轻化”

研究发现30亿年前的地幔温度升高热使地球地壳“年轻化” 为了进一步了解地壳的历史,研究人员对中国西南扬子克拉通花岗岩中的锆石颗粒进行了研究(如显微镜下所示)。图片来源:Wei Wang然而,陨石坑是微小锆石颗粒的家园,其中含有多种同位素系统,如铀、铪、氧或铅,为我们提供了一种了解数十亿年前历史的方法。与熔岩或岩浆形成的火成锆石相比,在岩石风化后的沉积物中发现的碎屑锆石能更连续地记录地球的历史。但是,由于碎屑锆石缺乏关于其来源岩石的岩石成因信息,它们可能会人为地暗示古老岩石的年轻年龄和不正确的铪同位素。在一项新的研究中,科学家们重点研究了完整的火成岩锆石。以前的研究表明,在距今约30亿年前从古新纪向中新纪过渡期间,位于碎屑岩和火成岩锆石中的铪同位素比值有所增加。这种增加被认为是地壳年轻化的结果,即较新的岩浆注入较老的地壳岩石。人们普遍认为,岩浆的增加也标志着从不动的地壳和地幔过渡到更加不稳定的板块运动时期。新研究对中国西南西南扬子克拉通花岗岩岩石的火成锆石和其他地球化学性质进行了研究,对这一理论提出了挑战。研究人员认为,这一时代全球范围内发生的地壳年轻化是地幔温度升高的结果,而不是大范围构造活动的结果。通过分析火成岩锆石中的同位素收集到的数据表明,较年轻的岩浆流入现有的大陆地壳,导致地幔岩石熔化,热岩浆在地壳-地幔边界汇集。这些部分熔化的岩浆有的会冷却成花岗岩,如西南扬子克拉通的花岗岩。这一过程可能在大陆地壳的生长过程中发挥了重要作用,并为我们今天所知的地球构造的起源提供了新的可能解释。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科大揭示地球氮元素起源与早期演化之谜

中国科大揭示地球氮元素起源与早期演化之谜 氮是地球上生命的基本组成元素之一,广泛存在于众多有机分子之中。尽管氮对生命至关重要,但与地球初始增生物质相比,当前硅酸盐地球(包括大气、地壳和地幔)的氮含量相对较低,大约只有2ppm(百万分之二)。深入研究地球中氮的增生演化历史对认识地球生命相关元素的起源及宜居性演变具有重要意义。目前,学术界主要有两种关于地球挥发份增生模型。第一种模型,即“后期增生模型(Late veneer)”,认为形成地球的初始增生物质几乎不含挥发份,包括氮,而硅酸盐地球目前所具有的挥发份丰度主要是在增生晚期通过加入少量富含挥发份物质(如碳质球粒陨石)形成的。第二种模型,即“早期演化模型”,则认为地球的初始增生物质原本就富含挥发份,地球所经历的一系列演化过程导致了目前硅酸盐地球相对于初始组分亏损挥发份。氮有两种稳定同位素,即14N和15N。氮同位素可用于示踪地球挥发份在行星增生过程中的演化历史,为研究类地行星挥发份的起源和演化提供了一种关键研究手段。然而,要有效利用这一工具,首先必须了解行星早期演化阶段中氮同位素的分馏机制。王文忠特任教授采用第一性原理计算方法,研究了星云物质凝聚形成星胚过程中的氮同位素分馏,包括熔融挥发和核幔分异两个阶段。研究发现,在早期太阳系星云中氢气尚未完全散失的条件下,熔融挥发使得星胚富集14N,而核幔分异则导致15N在硅酸盐熔体中富集。结合第一性原理计算结果和实际观测数据,研究团队发现早期星胚演化过程并不足以解释当前硅酸盐地球的氮同位素组成,必须在增生晚期加入一定量的富含挥发性成分的物质,如碳质球粒陨石,以解释观测到的氮同位素特征。因此,硅酸盐地球中的氮丰度是早期星胚演化和晚期增生阶段共同作用的结果。值得注意的是,尽管晚期增生对硅酸盐地球的氮丰度具有显著影响,但由于加入的富含挥发份物质的质量极低,其对硅酸盐地球中其他挥发份丰度的贡献十分有限。论文第一和通讯作者为王文忠特任教授,合作者包括英国伦敦大学学院John Brodholt教授、美国卡耐基科学研究所Michael Walter研究员和田纳西大学诺克斯维尔分校黄士春教授。近年来,王文忠特任教授领导的研究团队专注于类地行星挥发份的起源及早期演化,运用多种同位素作为示踪工具,结合第一性原理计算与观测数据,揭示了地球在吸积初始阶段便显著增生了大量挥发性元素,星胚的演化过程对地球的挥发份储库进行了重塑,相关论文发表在《NatureGeoscience》和《Science Advances》(Wang et al., 2021, NG, 2023, SA)。该研究对现有理论模型进行了重要的补充,重新评估了“后期增生”对地球氮丰度的影响。这一系列工作揭示了“早期演化”和“后期增生”两个阶段对地球挥发份的综合影响,为理解地球挥发性成分的演化历史提供了新的视角。图 早期星胚熔融挥发和晚期增生对挥发份的影响论文链接: ... PC版: 手机版:

封面图片

大气同位素揭示木卫一活跃45亿年的火山活动

大气同位素揭示木卫一活跃45亿年的火山活动 木卫一被称为太阳系中火山最活跃的天体,其极端的火山活动源于潮汐加热。这种加热是由于木卫二内部受到来自木星及其邻近卫星木卫二和木卫三的引力时产生的摩擦所致。木星的卫星木卫一,木卫一的夜面被木星反射的阳光照亮,即"木卫一之光"。图片来源:NASA/JPL-Caltech/SwRI/MSSS, Emma Wälimäki © CC BY然而,人们并不完全清楚木卫二如此大规模的火山活动持续了多久。由于月球目前的火山活动水平,木卫二的表面不断被改造,只留下了最近一百万年的地质记录。对木卫一大气中挥发性元素的稳定同位素测量可以提供有关木卫一火山活动历史的信息。Katherine de Kleer及其同事利用阿塔卡马大型毫米波/亚毫米波阵列(ALMA)观测了木卫二微弱大气中的气体,并确定了含硫和含氯分子的稳定同位素辐射。de Kleer等人发现,与太阳系的平均值相比,这两种元素的重同位素含量都很高,这是由于木卫二内部和大气层之间不断循环的物质导致轻同位素从高层大气中流失。研究结果表明,木卫二在这种排气和循环过程中损失了94%到99%的硫。根据作者的说法,这需要木卫二在其整个生命周期中都保持目前的火山活动水平。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

如果5亿年以前地球磁场没有崩溃 生命还能够存在吗?

如果5亿年以前地球磁场没有崩溃 生命还能够存在吗? 艺术家眼中的埃迪卡拉纪地球磁场最弱的时期虽然磁场大部分时间是稳定的,但也会随着时间的推移而波动。在一项新的研究中,罗切斯特大学的科学家们发现了地球历史上磁场的最薄弱点但令人惊讶的是,它似乎发生在复杂生命爆发之前,而不是像你想象的那样与大灭绝同时发生。古代矿物中的磁性颗粒可以记录当时的磁场强度。罗切斯特的研究人员测量了长石和辉石晶体中的磁化,将 20 多亿年前的样本与 5.91 亿年前的样本进行了比较。他们发现,较早的样本记录到的磁场强度与今天相似,但较年轻的样本表明,当时的磁场强度仅为现在的 3%也就是我们所知的磁场最弱的时候。这种较弱的磁场似乎持续了至少 2600 万年,然后才开始恢复强度。根据研究小组之前的工作,这正是地球内核凝固并稳定磁场的时间。磁场变弱意味着更多的宇宙辐射深入地球大气层,如果这种情况发生在今天,很可能会引发大灭绝事件。但有趣的是,这一历史低谷可能有助于所有动物祖先的进化。一种生活在埃迪卡拉纪的奇异生物迪金森尼亚的化石 肖树海,弗吉尼亚理工大学从 6.35 亿年前到 5.39 亿年前的埃迪卡拉纪是地球生命进化的关键阶段。在这一时期,复杂的多细胞生命形式首次出现,但它们几乎不像我们现在所知的生命它们看起来像圆盘、管子、扇子、甜甜圈,或者只是软软的"泥袋"。事实上,科学家们甚至搞不清楚这些生物到底是藻类、真菌,还是早期的植物或动物。到了下一个时期,即寒武纪,大多数怪胎似乎都灭绝了。但大约在同一时期,生命形式的多样性出现了大规模爆发,进化树上的几乎所有现代分支都在相对较短的时间内出现。这一事件的主要诱因之一被认为是大气中氧气含量的增加根据这项新研究,我们可能要感谢磁场的减弱。如前所述,这种浸透会让更多的辐射进入地球大气层,从而让更多的带电粒子剥离氢等原子。如果有足够多的氢原子流失到太空中,那么大气层中的氧原子就会堆积起来,而不是与氢发生反应形成水蒸气。随着时间的推移,空气中的氧气含量就会增加,从而为新生命的诞生提供动力。如果这种看法是真的,那就说明高级生命的进化是非常幸运的。如果磁场没有反弹,地球可能会走上火星的老路。这项研究的作者约翰-塔尔杜诺说:"如果在埃迪卡拉纪之后仍然存在异常微弱的磁场,地球可能会与今天这个富含水的星球大相径庭:水的流失可能会使地球逐渐干涸。"该研究成果发表在《自然-通讯-地球与环境》杂志上。 ... PC版: 手机版:

封面图片

耶鲁大学新研究揭示小行星撞击可能引发了"雪球"地球时期

耶鲁大学新研究揭示小行星撞击可能引发了"雪球"地球时期 一个由耶鲁大学领导的研究小组提出,大型小行星撞击可能会突然引发"雪球"地球时期,即地球被冰雪包裹的时期,从而解决了有关这些气候剧变的长期争论。他们利用复杂的气候模型进行的研究表明,在某些寒冷的气候条件下,小行星撞击可能会在十年内使地球进入全球冰川状态。图片来源:人工智能生成的图片,由 Michael S. Helfenbein 创建和编辑根据一项新的研究,这些所谓的"雪球"地球时期,即地球表面被冰覆盖数千年甚至数百万年的时期,可能是由撞向地球的大型小行星突然引发的。这项研究结果发表在《科学进展》(Science Advances)杂志上,可能回答了几十年来困扰科学家的一个问题,即地球历史上已知的一些最剧烈的气候变化。除耶鲁大学外,参与这项研究的还有芝加哥大学和维也纳大学的研究人员。气候模型学家从 20 世纪 60 年代起就知道,如果地球变得足够寒冷,冰雪的高反射率可能会形成一个"失控"的反馈回路,产生更多的海冰和更低的温度,直到地球被冰雪覆盖。在距今 7.2 亿年至 6.35 亿年前的地球新近纪,这样的情况至少出现过两次。然而,要解释这些被称为"滚雪球地球"事件的全球冰川期的起因,却一直没有定论。大多数理论都认为,大气中的温室气体以某种方式减少到了"滚雪球"开始的程度。全球冰川作用的新视角第一作者、耶鲁大学文理学院地球与行星科学系理查德-福斯特-弗林特博士后傅敏敏说:"我们决定探索另一种可能性。如果是地外撞击导致气候变化过渡非常突然呢?"在这项研究中,研究人员使用了一个复杂的气候模型,该模型在不同条件下表现了大气和海洋环流以及海冰的形成。该气候模型与用于预测未来气候情景的气候模型类型相同。在这种情况下,研究人员将其模型应用于假设的小行星撞击在过去四个不同时期造成的后果:工业化前(150 年前)、末次冰川最盛时期(2.1 万年前)、白垩纪(1.45 至 6600 万年前)和新近纪(10 亿至 5.42 亿年前)。研究人员发现,对于两种较暖的气候情景(白垩纪和工业化前),小行星撞击不太可能引发全球冰川。但在末次冰川极盛时期和新近纪的情景中,地球的温度可能已经冷到足以被视为冰河时期小行星撞击可能会使地球进入"雪球"状态。"我们的研究结果最让我惊讶的是,在足够寒冷的初始气候条件下,小行星撞击后的'雪球'状态可以在短短十年内就在全球海洋上形成,"合著者、耶鲁大学文理学院海洋与大气科学教授阿列克谢-费多罗夫(Alexey Fedorov)说。"到那时,赤道的海冰厚度将达到 10 米左右。相比之下,现代北极地区的海冰厚度通常为一到三米。"至于小行星在未来几年引发"雪球地球"时期的可能性,研究人员表示这种可能性不大部分原因是人类造成的气候变暖使地球升温尽管其他撞击可能具有同样的破坏性。编译自:ScitechDaily ... PC版: 手机版:

封面图片

灾难的蓝图:人类已将地球的淡水循环推向崩溃边缘

灾难的蓝图:人类已将地球的淡水循环推向崩溃边缘 研究显示,淡水变化的最新地球边界在二十世纪中叶就已被超越。换句话说,在过去的一个世纪里,人类一直在推动地球淡水系统的发展,远远超出了工业化之前的稳定状态。这是首次在如此长的时间尺度内,以适当的参考基线对全球水循环变化进行评估。发表在《自然-水》(Nature Water)上的研究结果表明,大坝建设、大规模灌溉和全球变暖等人类压力已经改变了淡水资源,以至于淡水资源调节重要生态和气候过程的能力岌岌可危。国际研究小组利用综合人类对淡水循环的所有主要影响的水文模型数据,以大约 50×50 公里的空间分辨率计算了每月的溪流流量和土壤湿度。作为基线,他们确定了前工业化时期(1661-1860 年)的条件。然后,他们将工业时期(1861-2005 年)与这一基线进行了比较。他们的分析表明,异常干旱或潮湿的情况河流流量和土壤湿度的偏差出现的频率增加了。与工业化前时期相比,自20世纪初以来,出现干湿偏差的区域持续扩大。总体而言,与工业化前相比,出现偏差的全球陆地面积几乎翻了一番。阿尔托大学的博士研究员、论文的主要作者之一维利-维尔基(Vili Virkki)说:"我们发现,现在的特殊情况比以前更加频繁和普遍,这清楚地表明了人类活动如何改变了全球淡水循环的状况。"由于分析是在高空间和时间分辨率下进行的,研究人员可以探索偏差的地理差异。在许多热带和亚热带地区,异常干燥的溪流和土壤湿度条件变得更加频繁,而在许多北方和温带地区,异常潮湿的条件有所增加,尤其是在土壤湿度方面。这些模式与气候变化导致的水供应变化相吻合。在人类使用土地和农业历史悠久的许多地区,模式更为复杂。例如,尼罗河、印度河和密西西比河流域都经历过异常干旱的河流流量和潮湿的土壤水分条件,这表明灌溉驱动了变化。米娜-波卡(Miina Porkka)解释说:"使用一种在不同水文变量和地理尺度上具有一致性和可比性的方法,对于理解推动我们所看到的淡水变化的生物物理过程和人类行为至关重要。"有了对溪流和土壤湿度变化的全面了解,研究人员就能更好地研究淡水循环变化的原因和后果。该研究的资深作者、阿尔托大学副教授马蒂-库姆(Matti Kummu)说:"更详细地了解这些动态变化有助于制定政策,减轻由此造成的危害,但我们的当务之急应该是减少人类对淡水系统造成的压力,因为淡水系统对地球上的生命至关重要。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人