韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍 韦伯望远镜非常适合用来识别极其遥远的超新星,因为存在一种叫做宇宙学红移的现象,在这种现象中,穿越宇宙的光线会被拉伸到更长的波长。来自远古超新星的可见光被拉伸得如此之长,以至于最终出现在红外线中。韦伯望远镜的仪器可以看到红外光,因此非常适合寻找这些遥远的超新星。一个研究小组利用韦伯早期宇宙深度探测的数据,发现了比以前已知的多 10 倍的远古超新星。这项研究是利用韦伯望远镜对远古超新星进行更广泛探测的第一步。JADES 深度场使用的是 NASA 詹姆斯-韦伯太空望远镜(JWST)的观测数据,这是 JADES(JWST 高级河外星系深度巡天)计划的一部分。一个研究 JADES 数据的天文学家小组发现了大约 80 个亮度随时间变化的天体(绿色圈内)。这些被称为瞬变天体的天体大多是恒星或超新星爆炸的结果。资料来源:NASA、ESA、CSA、STScI、JADES 合作组织美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)深入窥探宇宙,为科学家们首次提供了宇宙早期超新星的详细资料。一个使用韦伯数据的研究小组发现,早期宇宙中的超新星比之前已知的多 10 倍。其中一些新发现的爆炸恒星是同类恒星中最遥远的例子,包括那些用来测量宇宙膨胀率的恒星。"韦伯望远镜是一台发现超新星的机器,"图森市亚利桑那大学斯图尔特天文台的三年级研究生克里斯塔-德库西(Christa DeCoursey)说。"探测到的超新星数量之多,加上这些超新星的距离之远,是我们巡天观测中最令人兴奋的两项成果"。德库西在威斯康星州麦迪逊举行的美国天文学会第244次会议的新闻发布会上介绍了这些发现。资料来源:NASA、ESA、CSA、Ann Feild(STScI)为了取得这些发现,研究小组分析了作为 JWST 高级深河外星系巡天(JADES)计划一部分而获得的成像数据。韦伯望远镜非常适合寻找极其遥远的超新星,因为它们的光线会被拉伸到更长的波长这种现象被称为宇宙学红移。(见上图)。在韦伯望远镜发射之前,只有少数超新星的红移超过2,这相当于宇宙的年龄只有33亿年仅为目前年龄的25%。JADES样本包含了许多在更久远的过去爆炸的超新星,当时宇宙的年龄还不到20亿年。以前,研究人员利用美国宇航局的哈勃太空望远镜观测宇宙处于"青年期"时的超新星。通过 JADES,科学家们看到了宇宙处于"十几岁"或"前十几岁"时的超新星。未来,他们希望能够回望宇宙的"幼儿"或"婴儿"阶段。为了发现这些超新星,研究小组比较了相隔一年的多幅图像,寻找在这些图像中消失或出现的光源。这些观测亮度随时间变化的天体被称为瞬变体,而超新星就是瞬变体的一种。总之,JADES 瞬变巡天样本小组在一片只有米粒粗细的天空中发现了大约 80 个超新星。这张马赛克照片展示了从 JADES(JWST 高级深河外星系巡天)计划的数据中发现的约 80 个瞬变天体(即亮度不断变化的天体)中的三个。大多数瞬变体都是恒星或超新星爆炸的结果。通过对比 2022 年和 2023 年拍摄的图像,天文学家可以找到从我们的视角来看最近才爆炸的超新星(如前两列所示的例子),或者已经爆炸但其光线正在逐渐消失的超新星(第三列)。每颗超新星的年龄都可以通过它的红移(用"z"表示)来确定。最遥远的超新星的红移为 3.8,它的光起源于宇宙只有 17 亿年的时候。红移 2.845 相当于宇宙大爆炸后 23 亿年。最接近的例子红移为 0.655,显示的是大约 60 亿年前离开其星系的光线,当时宇宙的年龄刚刚超过现在的一半。资料来源:NASA、ESA、CSA、STScI、Christa DeCoursey(亚利桑那大学)、JADES 合作组织位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)的美国宇航局爱因斯坦研究员贾斯汀-皮埃尔(Justin Pierel)说:"这确实是我们对高红移宇宙的瞬态科学的第一个样本。我们正试图确定遥远的超新星是否与我们在附近宇宙中看到的超新星有本质区别或非常相似。"皮埃尔和 STScI 的其他研究人员提供了专家分析,以确定哪些瞬变实际上是超新星,哪些不是,因为它们往往看起来非常相似。研究小组发现了一些高红移超新星,包括光谱学上确认的最远的一颗,红移为 3.6。它的祖星在宇宙只有 18 亿岁时爆炸。这是一颗所谓的核心坍缩超新星,是一颗大质量恒星的爆炸。这段动画展示了白矮星爆炸的过程,白矮星是一颗恒星的残余物,密度极高,其核心已无法再燃烧核燃料。在这颗"Ia 型"超新星中,白矮星的引力从附近的恒星伴星那里偷走了物质。当白矮星的质量估计达到目前太阳质量的 1.4 倍时,它再也无法承受自身的重量,于是爆炸了。资料来源:NASA/JPL-Caltech天体物理学家特别感兴趣的是 Ia 型超新星。(这些爆炸的恒星非常明亮,可以用来测量遥远的宇宙距离,帮助科学家计算宇宙的膨胀率。研究小组至少发现了一颗红移为 2.9 的 Ia 型超新星。这颗爆炸产生的光在 115 亿年前开始向我们传播,当时宇宙的年龄只有 23 亿年。此前经光谱学确认的 Ia 型超新星的距离记录是红移 1.95,当时宇宙的年龄是 34 亿年。科学家们迫切希望分析高红移下的Ia型超新星,看看它们是否都具有相同的内在亮度,而与距离无关。这一点至关重要,因为如果它们的亮度随红移而变化,那么它们就不能成为测量宇宙膨胀率的可靠标记。Pierel 分析了这颗发现于红移 2.9 的 Ia 型超新星,以确定其内在亮度是否与预期不同。虽然这只是第一个这样的天体,但结果表明没有证据表明Ia型亮度会随红移而变化。我们还需要更多的数据,但现在,基于 Ia 型超新星的宇宙膨胀率理论及其最终命运仍然保持不变。皮埃尔还在美国天文学会第244次会议上介绍了他的研究成果。早期宇宙的环境与现在截然不同。科学家们期望看到来自恒星的古老超新星,这些恒星所含的重化学元素远远少于太阳这样的恒星。将这些超新星与本地宇宙中的超新星进行比较,将有助于天体物理学家了解早期恒星的形成和超新星的爆发机制。STScI研究员马修-西伯特(Matthew Siebert)说:"我们基本上为瞬变宇宙打开了一扇新窗口。从历史上看,每当我们这样做的时候,我们都会发现一些极其令人兴奋的东西一些我们意想不到的东西。"JADES团队成员、亚利桑那大学图森分校研究教授Eiichi Egami说:"由于韦伯望远镜非常灵敏,它几乎能在其指向的所有地方发现超新星和其他瞬变体。这是利用韦伯望远镜对超新星进行更广泛观测的重要第一步。"编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韦伯太空望远镜改写了蟹状星云超新星的起源故事

韦伯太空望远镜改写了蟹状星云超新星的起源故事 美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)剖析了蟹状星云的结构,为天文学家继续评估有关超新星残余物起源的主要理论提供了帮助。利用韦伯望远镜的近红外相机(NIRCam)和中红外成像仪(MIRI)收集到的数据,科学家小组得以仔细观察蟹状星云的一些主要组成部分。资料来源:美国国家航空航天局美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)提供了蟹状体的新视图,包括迄今为止最高质量的红外数据,帮助科学家探索残余物的详细结构和化学成分。这些线索有助于揭开这颗恒星在大约1000年前爆炸的不寻常方式。天文学家有史以来第一次绘制出了这颗超新星残余物的暖尘埃发射图。尘粒以蓬松的洋红色物质为代表,形成了一个笼状结构,在残余物的左下方和右上方最为明显。尘埃细丝也遍布蟹状体内部,有时与绿色的双电离硫(III 号硫)区域重合。黄白色的斑驳细丝在超新星残余物中心周围形成大的环状结构,代表了尘埃和双电离硫重叠的区域。尘埃的笼状结构有助于限制一些幽灵般的同步辐射,但不是所有蓝色的同步辐射。这些发射就像一缕缕烟雾,在蟹状体中心最为明显。细细的蓝色丝带沿着蟹状体的脉冲星心脏一颗快速旋转的中子星产生的磁场线延伸。资料来源:NASA、ESA、CSA、STScI、Tea Temim(普林斯顿大学)一个科学家小组利用美国国家航空航天局的詹姆斯-韦伯太空望远镜解析了蟹状星云的成分,这是一个超新星残余物,位于大约6500光年外的金牛座。利用望远镜的中红外成像仪(MIRI)和近红外相机(NIRCam),研究小组收集到的数据有助于澄清蟹状星云的历史。蟹状星云是一颗大质量恒星死亡后发生的核心坍缩超新星的结果。超新星爆炸本身是在公元 1054 年在地球上看到的,当时的亮度足以在白天观测到。今天观测到的暗得多的残留物是一个不断膨胀的气体和尘埃外壳,以及由脉冲星驱动的外流风,脉冲星是一颗快速旋转和高度磁化的中子星。蟹状星云也非常不寻常。它的非典型成分和极低的爆炸能量以前曾被解释为电子捕获超新星一种罕见的爆炸类型,产生于内核由氧、氖和镁组成的进化程度较低的恒星,而不是更典型的铁内核。"现在,韦伯数据拓宽了可能的解释,"该研究的第一作者、新泽西州普林斯顿大学的 Tea Temim 说。"气体的组成不再需要电子捕获爆炸,也可以用弱铁核坍缩超新星来解释。"由韦伯望远镜的近红外波束和中红外成像仪拍摄的蟹状星云图像,并附有罗盘箭头、比例尺和参考色键。向北和向东的罗盘箭头表示图像在天空中的方位,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条标注的单位是光年,即光在一个地球年中的传播距离。(光走过与光柱长度相等的距离需要 2 年)。一光年约等于 5.88 万亿英里或 9.46 万亿公里。本图中显示的视场直径约为 10 光年。这幅图像显示的是不可见的近红外和中红外光波长,这些波长已被转换成可见光的颜色。色键显示了 NIRCam 和 MIRI 观测到的成分,以及每个特征所对应的可见光颜色。资料来源:NASA、ESA、CSA、STScI、Tea Temim(普林斯顿大学)过去的研究工作是根据现今喷出物的数量和速度计算爆炸的总动能。天文学家推断,爆炸的性质是能量相对较低(不到普通超新星的十分之一),原恒星的质量在 8 到 10 个太阳质量之间在经历超新星剧烈死亡和不经历超新星剧烈死亡的恒星之间徘徊。然而,捕获超新星理论与蟹号的观测结果之间存在矛盾,特别是观测到的脉冲星的快速运动。近年来,天文学家对铁核坍缩超新星的认识也有了提高,现在他们认为,只要恒星质量足够低,这种类型的超新星也能产生低能爆炸。为了降低蟹状体祖星和爆炸性质的不确定性,Temim 领导的研究小组利用韦伯望远镜的光谱能力,对蟹状体内丝的两个区域进行了仔细观察。理论预测,由于电子捕获超新星内核的化学成分不同,镍/铁丰度比(Ni/Fe)应该远远高于在太阳中测得的比率(太阳中的这些元素来自前几代恒星)。20世纪80年代末和90年代初的研究利用光学和近红外数据测量了蟹体内的镍/铁比率,并注意到镍/铁丰度比率很高,似乎有利于电子捕获超新星的设想。韦伯望远镜具有灵敏的红外能力,目前正在推进蟹状星云的研究。研究小组利用 MIRI 的光谱能力测量了镍和铁的发射线,从而对镍/铁丰度比做出了更可靠的估计。他们发现,与太阳相比,镍/铁丰度比仍然偏高,但幅度不大,与之前的估计值相比要低得多。修订后的数值与电子捕获是一致的,但并不排除类似低质量恒星的铁核坍缩爆炸。(来自高质恒星的高能爆炸预计会产生更接近太阳丰度的比率)。要区分这两种可能性,还需要进一步的观测和理论工作。华盛顿海军研究实验室的马丁-拉明(Martin Laming)是这篇论文的合著者之一,他说:"目前,韦伯望远镜的光谱数据只覆盖了蟹状体的两个小区域,因此研究更多的残留物并确定任何空间变化非常重要。如果我们能识别出其他元素(如钴或锗)的发射线,那将会非常有趣"。除了从蟹状星云内部的两个小区域获取光谱数据以测量丰度比之外,这台望远镜还观测了残余物的大环境,以了解同步辐射和尘埃分布的细节。通过近红外成像仪收集的图像和数据,研究小组首次分离出蟹体内的尘埃辐射,并绘制出高分辨率的地图。通过利用韦伯望远镜绘制暖色尘埃发射图,甚至将其与赫歇尔空间天文台关于较冷尘埃颗粒的数据相结合,研究小组绘制出了一幅全面的尘埃分布图:最外层的细丝含有相对较暖的尘埃,而较冷的尘埃颗粒则普遍存在于中心附近。亚利桑那大学斯图尔特天文台的内森-史密斯(Nathan Smith)是这篇论文的合著者之一,他说:"在蟹状天体中看到尘埃的位置很有趣,因为它不同于其他超新星残骸,比如仙后座A和超新星1987A。在这些天体中,尘埃位于最中心。而在蟹状星云中,尘埃位于外壳的致密细丝中。蟹状星云符合天文学的传统:最近、最亮、研究得最好的天体往往是奇异的。"这些发现发表在《天体物理学杂志通讯》上。编译自/ScitechDaily ... PC版: 手机版:

封面图片

NASA费米望远镜发现附近超新星并没有发出伽马射线

NASA费米望远镜发现附近超新星并没有发出伽马射线 2023 年对风车星系中的超新星 SN 2023ixf 的观测为研究宇宙射线的产生提供了一个独特的机会,但是 NASA 的费米望远镜并没有探测到预期的伽马射线,这表明能量转换率比预期的要低得多。资料来源:美国国家航空航天局2023年5月18日,一颗超新星在附近的风车星系(Messier 101)爆发,它位于大约2200万光年外的大熊座。这颗超新星被命名为SN 2023ixf,是自2008年费米探测器发射以来发现的附近最亮的超新星。意大利里雅斯特大学研究员吉列姆-马蒂-德韦萨说:"天体物理学家以前估计,超新星将其总能量的大约 10%转化为宇宙射线加速度。但我们从未直接观测到这一过程。通过对SN 2023ixf的新观测,我们的计算结果是爆炸后几天内的能量转换率低至1%。这并不排除超新星是宇宙射线工厂的可能性,但这确实意味着我们还有更多关于超新星产生的知识要学习。"这篇论文由马丁-德维萨在奥地利因斯布鲁克大学(University of Innsbruck)期间发表,将刊登在未来出版的《天文学与天体物理学》(Astronomy and Astrophysics)杂志上。即使没有探测到伽马射线,美国宇航局的费米伽马射线太空望远镜也能帮助天文学家了解更多有关宇宙的信息。资料来源:美国宇航局戈达德太空飞行中心宇宙射线及其起源每天,数以万亿计的宇宙射线与地球大气层发生碰撞。其中大约 90% 是氢原子核(或质子),其余的是电子或较重元素的原子核。自 20 世纪初以来,科学家们一直在研究宇宙射线的起源,但这些粒子无法追溯到它们的源头。由于宇宙射线带电,它们在飞往地球的途中会因遇到磁场而改变方向。位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的费米项目科学家伊丽莎白-海斯说:"然而,伽马射线会直接射向我们。宇宙射线在与周围环境中的物质相互作用时会产生伽马射线。费米望远镜是轨道上最灵敏的伽马射线望远镜,因此当它没有探测到预期的信号时,科学家必须对这种缺失做出解释。解开这个谜团,就能更准确地了解宇宙射线的起源。"弗雷德-劳伦斯-惠普尔天文台(Fred Lawrence Whipple Observatory)的48英寸望远镜在2023年6月捕捉到了这张风车星系(Messier 101)的可见光图像。超新星2023ixf的位置被圈了起来。天文台位于亚利桑那州的霍普金斯山上,由哈佛天体物理学中心和史密森尼天文台共同运营。资料来源:平松等人,2023/Sebastian Gomez (STScI)作为宇宙射线加速器的超新星长期以来,天体物理学家一直怀疑超新星是宇宙射线的主要贡献者。当一颗质量至少是太阳 8 倍的恒星耗尽燃料时,就会发生这种爆炸。内核坍缩,然后反弹,推动冲击波向外穿过恒星。冲击波加速粒子,产生宇宙射线。当宇宙射线与恒星周围的其他物质和光线碰撞时,就会产生伽马射线。超新星会极大地影响星系的星际环境。它们的爆炸波和不断膨胀的碎片云可能会持续存在 5 万年以上。2013年,费米测量显示,银河系中的超新星残骸正在加速宇宙射线,当它们撞击星际物质时,会产生伽马射线光。但天文学家说,这些残余物并没有产生足够的高能粒子,无法与科学家在地球上的测量结果相匹配。一种理论认为,超新星可能会在最初爆炸后的几天或几周内加速银河系中能量最高的宇宙射线。但是超新星非常罕见,在银河系这样的星系中,一个世纪才会发生几次。在大约3200万光年的距离内,超新星平均每年只发生一次。从可见光望远镜第一次看到 SN 2023ixf 开始,经过一个月的观测,费米没有探测到伽马射线。挑战与未来研究合著者、法国国家科学研究中心下属蒙彼利埃宇宙与粒子实验室的天体物理学家马蒂厄-雷诺(Matthieu Renaud)说:"不幸的是,看不到伽马射线并不意味着没有宇宙射线。我们必须对所有有关加速机制和环境条件的基本假设进行研究,才能将伽马射线的缺失转化为宇宙射线产生的上限。"研究人员提出了几种可能影响费米观测到该事件产生的伽马射线的情况,比如爆炸碎片的分布方式和恒星周围物质的密度。费米的观测首次为研究超新星爆炸后的状况提供了机会。以其他波长对SN 2023ixf进行的更多观测、基于这一事件的新模拟和模型,以及未来对其他年轻超新星的研究,都将帮助天文学家找到宇宙宇宙射线的神秘来源。费米是戈达德管理的一个天体物理学和粒子物理学合作项目。费米项目是与美国能源部合作开发的,法国、德国、意大利、日本、瑞典和美国的学术机构和合作伙伴也做出了重要贡献。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃望远镜探索“超新星工厂”UGC 9684:隔几年就能生产一个太阳

哈勃望远镜探索“超新星工厂”UGC 9684:隔几年就能生产一个太阳 这幅哈勃太空望远镜拍摄的螺旋星系 UGC 9684 位于灶神座,呈现出中央条带和周围光环等特征。它因 2020 年的一颗超新星而突出,并以其频繁的超新星事件和活跃的恒星形成而闻名,成为天文学家关注的焦点。图片来源:ESA/哈勃和 NASA, C. Kilpatrick这张图片展示了几个经典的星系特征,包括星系中心的透明条和环绕星系圆盘的光环,令人印象深刻。这张哈勃图像是对II 型超新星宿主星系的研究成果。这些大灾变恒星爆炸发生在整个宇宙中,引起了天文学家的极大兴趣,因此自动巡天仪会扫描夜空,试图捕捉到它们的踪迹。让哈勃注意到 UGC 9684 的超新星发生在 2020 年。在这张拍摄于 2023 年的照片中,它已经从视野中消失了。值得注意的是,2020年在这个星系中发现的超新星并不是唯一的一颗自2006年以来,在UGC 9684星系中已经发现了四颗类似超新星的事件,使它成为最活跃的超新星生成星系。事实证明,UGC 9684 是一个相当活跃的恒星形成星系,根据计算,它每隔几年就会产生一个太阳质量的恒星。这种恒星形成水平使UGC 9684成为名副其实的超新星工厂,也是希望研究这些特殊事件的天文学家需要关注的星系。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程 这幅插图显示了一个在宇宙大爆炸后几亿年才形成的星系,在重离子时代,气体是透明和不透明的混合体。来自美国宇航局詹姆斯-韦伯太空望远镜的数据显示,这些早期星系附近存在大量冷的中性气体而且这些气体的密度可能比预想的要高。韦伯望远镜在2022年开始观测几个月后,作为其宇宙演化早期释放科学(CEERS)调查的一部分观测到了这些星系。CEERS包括图像和来自其NIRSpec(近红外摄谱仪)上微型遮光器的光谱数据。作为韦伯早期发布科学(ERS)计划的一部分,CEERS的数据被立即发布,以支持类似的发现。资料来源:NASA、ESA、CSA、Joseph Olmsted(STScI)这一发现是利用詹姆斯-韦伯太空望远镜(James Webb Space Telescope)完成的,该望远镜为我们地球上的人们带来了对形成中星系的首次"实时观测"。通过这架望远镜,研究人员能够看到大量气体发出的信号,这些气体在形成过程中不断积累并吸附到一个小型星系上。虽然根据理论和计算机模拟,星系就是这样形成的,但实际情况却从未出现过。"可以说,这是我们看到的第一张'直接'拍摄的星系形成图像。詹姆斯-韦伯之前向我们展示的是处于演化后期的早期星系,而在这里,我们见证了它们的诞生,从而也见证了宇宙中第一批恒星系统的构建。"尼尔斯-玻尔研究所的卡斯帕-埃尔姆-海因茨助理教授说,他领导了这项新研究。这项研究发表在备受推崇的科学杂志《科学》上。他们是如何做到的:研究人员利用复杂的模型,研究了来自这些星系的光线是如何被其内部和周围的中性气体吸收的,从而能够测量出宇宙第一批星系的形成过程。这种转变被称为莱曼-阿尔法转变。通过测量光线,研究人员能够将新形成的星系中的气体与其他气体区分开来。这些测量结果之所以能够实现,要归功于詹姆斯-韦伯太空望远镜极其灵敏的红外摄谱仪功能。大爆炸后不久诞生的星系研究人员估计,这三个星系的诞生大约发生在宇宙大爆炸之后的 4-6 亿年。虽然这听起来像是一个很长的时间,但它相当于在宇宙 138 亿年总寿命的前 3% 到 4% 的时间里形成的星系。宇宙大爆炸后不久,宇宙还是一团由氢原子组成的巨大不透明气体与今天不同的是,今天的夜空中布满了轮廓分明的恒星。"在宇宙大爆炸后的几亿年里,第一批恒星形成,之后恒星和气体开始凝聚成星系。"达拉赫-沃森(Darach Watson)副教授解释说:"这就是我们在观测中看到的开始过程。"星系的诞生发生在宇宙历史上被称为"再电离纪元"的时期,当时一些第一批星系的能量和光线冲破了氢气迷雾。研究人员正是利用詹姆斯-韦伯太空望远镜的红外视觉捕捉到了这些大量的氢气。这是迄今为止科研人员发现的对寒冷的中性氢气最遥远的测量,氢气是恒星和星系的组成部分。关于早期宇宙宇宙的"生命"始于大约 138 亿年前的一次巨大爆炸宇宙大爆炸。这一事件产生了大量的亚原子粒子,如夸克和电子。这些粒子聚集在一起形成质子和中子,随后凝聚成原子核。宇宙大爆炸后大约 38 万年,电子开始围绕原子核运行,宇宙中最简单的原子逐渐形成。第一批恒星是在几亿年后形成的。在这些恒星的内部,形成了我们周围更大、更复杂的原子。后来,恒星凝聚成星系。我们已知最古老的星系是在宇宙大爆炸后大约 3-4 亿年形成的。我们的太阳系诞生于大约 46 亿年前宇宙大爆炸后 90 多亿年。进一步了解我们的起源这项研究是由卡斯帕-埃尔姆-海因茨(Kasper Elm Heintz)与哥本哈根大学尼尔斯-玻尔研究所宇宙曙光中心的研究同事达拉赫-沃森(Darach Watson)、加布里埃尔-布拉莫尔(Gabriel Brammer)和博士生西蒙妮-维加尔(Simone Vejlgaard)等人密切合作完成的。这项最新成果让他们离实现这一目标更近了一步。研究小组已经申请了更多的詹姆斯-韦伯太空望远镜的观测时间,希望能够扩大他们的新成果,了解更多关于星系形成的最早时代的信息。"目前,我们正在绘制新观测到的星系形成图,其细节比以前更加丰富。与此同时,我们也在不断尝试突破我们所能看到的宇宙的极限。因此,也许我们会走得更远,"Simone Vejlgaard 说。研究人员认为,新知识有助于回答人类最基本的问题之一。"我们人类一直在问的一个最基本的问题是:'我们从哪里来?'在这里,我们通过揭示宇宙中一些最初的结构产生的时刻,拼凑出了更多的答案。"加布里埃尔-布拉莫尔(Gabriel Brammer)副教授总结说:"我们将进一步研究这个过程,希望能够拼凑出更多的拼图碎片。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离 哈勃太空望远镜通过观测 Ia 型超新星(如 NGC 3810 中的超新星)来帮助测量宇宙距离,利用它们一致的亮度来测量根据星系间尘埃效应调整后的距离。资料来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley天体物理学的一项重要任务是测量星系、类星体和星系团等真正遥远天体的距离。在研究早期宇宙时尤其如此,但这是一项艰巨的任务。只有太阳、行星和一些邻近恒星等少数邻近天体,我们才能直接测量它们的距离。除此之外,我们还需要使用各种间接方法;其中最重要的一种方法就是研究 Ia 型超新星,而这正是NASA/ESA 哈勃太空望远镜的作用所在。NGC 3810,也就是这张照片中的星系,是 2022 年一颗 Ia 型超新星的宿主。2023 年初,哈勃聚焦于这个星系和其他一些星系,仔细研究最近的 Ia 型超新星。这种超新星是由白矮星爆炸产生的,它们的亮度都非常一致。这使得它们可以被用来测量距离:我们知道Ia型超新星应该有多亮,所以我们可以根据它的暗淡程度来判断它的距离有多远。这种方法的一个不确定因素是,地球和超新星之间的星际尘埃会阻挡部分光线。你怎么知道光的减少有多少是由距离造成的,有多少是由尘埃造成的?在哈勃的帮助下,我们找到了一个巧妙的解决方法:用紫外光和红外光拍摄同一 Ia 型超新星的图像,紫外光几乎完全被尘埃遮挡,而红外光则几乎不受影响地穿过尘埃。通过仔细观察每个波长有多少光穿过,就可以校准超新星亮度和距离之间的关系,从而考虑到尘埃的影响。这幅图像描绘的是螺旋星系 NGC 3810。2023 年,该星系被列入哈勃计划,以提高利用 Ia 型超新星进行距离测量的精确度。之所以能做到这一点,是因为 NGC 3810 中的一颗白矮星刚刚变成超新星,哈勃在超新星从视野中消失之前捕捉到了这幅图像。超新星以发现年份命名,后跟字母递增标签a、b,以此类推。如今,通过自动巡天,每年都会发现成千上万颗超新星,因此这颗超新星被命名为SN 2022zut,即2022年发现的第18000142颗超新星!图片来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley哈勃可以用同一台仪器对这两种波长的光进行详细观测。这使它成为了这项实验的完美工具,事实上,用来制作 NGC 3810 这幅美丽图像的部分数据就集中在它的 2022 年超新星上。你可以看到它在银河核下方的一个光点,或者在上面的注释图像中看到它。测量宇宙距离的方法有很多;因为 Ia 型超新星非常明亮,所以当发现它们时,它们是最有用、最精确的工具之一。此外,还必须使用许多其他方法,要么作为对其他距离测量的独立检验,要么测量更近或更远的距离。其中一种方法也适用于星系,那就是将星系的旋转速度与亮度进行比较;根据这种方法,我们发现 NGC 3810 距地球 5000 万光年。编译自/ScitechDaily ... PC版: 手机版:

封面图片

破纪录的银河系发现:韦伯太空望远镜一瞥宇宙曙光

破纪录的银河系发现:韦伯太空望远镜一瞥宇宙曙光 这张来自美国宇航局詹姆斯-韦伯太空望远镜(又称韦伯望远镜或 JWST)的红外图像是由 NIRCam(近红外相机)为 JWST 高级深河外星系巡天计划(或 JADES)拍摄的。NIRCam的数据被用来确定哪些星系需要通过光谱观测进行进一步研究。其中一个星系JADES-GS-z14-0(如图所示)被确定为红移14.32(+0.08/-0.20),是目前已知最遥远星系的记录保持者。这相当于宇宙大爆炸后不到3亿年的时间。资料来源:NASA、ESA、CSA、STScI、Brant Robertson(加州大学圣克鲁兹分校)、Ben Johnson(CfA)、Sandro Tacchella(剑桥大学)、Phill Cargile(CfA)在过去的两年里,科学家们利用美国宇航局的詹姆斯-韦伯太空望远镜(又称韦伯望远镜或 JWST)探索了天文学家所说的宇宙黎明期宇宙大爆炸后最初几亿年的时期,在这一时期诞生了第一批星系。这些星系提供了重要的洞察力,让我们了解宇宙在非常年轻的时候,气体、恒星和黑洞是如何变化的。2023 年 10 月和 2024 年 1 月,一个国际天文学家小组利用韦伯望远镜观测星系,这是 JWST 高级深河外星系巡天(JADES)计划的一部分。利用韦伯望远镜的近红外摄谱仪(NIRSpec),他们获得了大爆炸后仅 2.9 亿年就观测到的一个创纪录星系的光谱。这相当于约 14 的红移,红移是衡量星系的光线被宇宙膨胀拉伸的程度的一个指标。我们邀请了意大利比萨高等师范学院的斯特凡诺-卡尼亚尼(Stefano Carniani)和亚利桑那州图森市亚利桑那大学的凯文-海因莱恩(Kevin Hainline)为我们详细介绍这个源是如何被发现的,以及它的独特性质对星系形成的启示:科学家们利用美国宇航局詹姆斯-韦伯太空望远镜的近红外摄谱仪(NIRSpec)获取了遥远星系JADES-GS-z14-0的光谱,以精确测量其红移,从而确定其年龄。红移可以通过一个被称为莱曼-阿尔法断裂的临界波长的位置来确定。这个星系的历史可以追溯到宇宙大爆炸后不到3亿年。资料来源:NASA、ESA、CSA、Joseph Olmsted(STScI)、S. Carniani(Scuola Normale Superiore)、JADES Collaboration高红移星系研究取得突破性进展"韦伯望远镜上的仪器旨在发现和了解最早的星系,在作为 JWST 高级深河外星系巡天(JADES)一部分的第一年观测中,我们发现了大爆炸后最初 6.5 亿年的数百个候选星系。2023年初,我们在数据中发现了一个星系,它有强有力的证据表明它的红移超过了14,这让我们非常兴奋,但是这个星系源的一些特性让我们很警惕。这个光源的亮度出乎我们的意料,这对于一个如此遥远的星系来说是不可能的,而且它距离另一个星系非常近,这两个星系似乎是一个更大天体的一部分。当我们在2023年10月作为JADES起源场的一部分再次观测这个源时,用韦伯更窄的NIRCam(近红外相机)滤镜获得的新成像数据更加指向高红移假说。我们知道我们需要一个光谱,因为无论我们了解到什么,都将具有巨大的科学意义,无论是作为韦伯研究早期宇宙的一个新的里程碑,还是作为一个中年星系的一个令人困惑的怪胎。2024年1月,NIRSpec对这个名为JADES-GS-z14-0的星系进行了近10个小时的观测,当首次处理光谱时,有明确的证据表明这个星系的红移确实达到了14.32,打破了之前最远星系的记录(JADES-GS-z13-0的z=13.2)。鉴于这个星系源的神秘性,看到这个光谱让整个团队都感到无比兴奋。对于我们的团队来说,这个发现不仅仅是一个新的距离记录;JADES-GS-z14-0最重要的一点是,在这个距离上,我们知道这个星系本质上一定非常明亮。从图像上看,这个光源的直径超过了1600光年,证明我们看到的光主要来自年轻恒星,而不是来自一个不断增长的超大质量黑洞附近的发射。这么多的星光意味着这个星系的质量是太阳的几亿倍!这就提出了一个问题:大自然是如何在不到3亿年的时间里创造出如此明亮、巨大和庞大的星系的呢?"揭开古老之光的新启示这些数据揭示了这个惊人星系的其他重要方面。我们看到这个星系的颜色并不像想象中那么蓝,这表明即使在非常早期的时候,一些光线也被尘埃染红了。来自 Steward 天文台和亚利桑那大学的 JADES 研究员 Jake Helton 还发现,JADES-GS-z14-0 被韦伯的中红外仪器(MIRI)以更长的波长探测到,考虑到它的距离,这是一项了不起的成就。中红外成像仪的观测覆盖了可见光范围内发射的光波长,而韦伯望远镜的近红外仪器对这些波长进行了红移。杰克的分析表明,近红外成像观测所暗示的源亮度高于其他韦伯仪器的测量值,这表明该星系中存在强烈的电离气体发射,其形式为氢和氧的明亮发射线。在这个星系生命的早期就存在氧气是一个令人惊讶的现象,这表明在我们观测到这个星系之前,多代大质量恒星已经开始了它们的生命。所有这些观测结果都告诉我们,JADES-GS-z14-0 并不像理论模型和计算机模拟所预测的那种存在于宇宙早期的星系。根据观测到的星系源亮度,我们可以预测它随着宇宙时间的推移可能会如何增长,而到目前为止,我们还没有从我们在巡天观测中观测到的其他数百个高红移星系中找到任何合适的类似物。鉴于搜索发现 JADES-GS-z14-0 的天空区域相对较小,它的发现对我们在早期宇宙中看到的明亮星系的预测数量有着深远的影响。天文学家很可能会在未来的十年中利用韦伯望远镜发现许多这样的明亮星系,甚至可能是更早的星系。我们很高兴能看到宇宙黎明时存在的星系的非凡多样性。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人