EPFL研究人员创造出超低温下将热能转化为电能的新型装置

EPFL研究人员创造出超低温下将热能转化为电能的新型装置 要进行量子计算,量子比特(量子位)必须冷却到毫开尔文范围(接近-273摄氏度)的温度,以减缓原子运动并将噪声降至最低。然而,用于管理这些量子电路的电子器件会产生热量,在如此低的温度下很难去除。因此,大多数当前的技术都必须将量子电路与其电子组件分离,这会导致噪音和低效率,阻碍实验室以外更大量子系统的实现。由Andras Kis领导的EPFL纳米电子与结构实验室(LANES)的研究人员现在已经制造出一种设备,该设备不仅在极低的温度下工作,而且在室温下的效率与当前的技术相当。该成果已发表在《自然·纳米技术》杂志上。LANES博士生Gabriele Pasquale说:“我们是第一个创造出一种与当前技术的转换效率相匹配的设备,但它能在量子系统所需的低磁场和超低温下工作。这项工作确实向前迈出了一步。”该创新器件将石墨烯的优异导电性与硒化铟的半导体特性相结合。它只有几个原子厚,表现得像一个二维物体,这种材料和结构的新颖组合产生了前所未有的性能。该设备利用了能斯特效应:一种复杂的热电现象,当磁场垂直于温度变化的物体时,会产生电压。实验室设备的2D特性允许以电气方式控制该机构的效率。2D结构是在EPFL微纳技术中心和LANES实验室制造的。实验包括使用激光作为热源,使用专门的稀释冰箱达到100毫开尔文,这一温度甚至比外太空还要低。在如此低的温度下将热量转换为电压通常极具挑战性,但新型器件及其对能斯特效应的利用使这成为可能,填补了量子技术的一个关键空白。“如果你把笔记本电脑放在寒冷的办公室里,笔记本电脑在工作时仍然会发热,导致房间的温度也会升高。在量子计算系统中,目前没有任何机制可以防止这种热量干扰量子位。我们的设备可以提供这种必要的冷却,”Pasquale说。Pasquale是一名受过训练的物理学家,他强调这项研究意义重大,因为它揭示了低温下的热电能转换这是一种迄今为止尚未探索的现象。考虑到高转换效率和潜在可制造电子元件的使用,LANES团队还认为他们的设备已经可以集成到现有的低温量子电路中。Pasquale说:“这些发现代表了纳米技术的重大进步,有望开发出对毫开尔文温度下的量子计算至关重要的先进冷却技术。”。“我们相信,这一成就将彻底改变未来技术的冷却系统。” ... PC版: 手机版:

相关推荐

封面图片

纳米级发电厂:用石墨烯带将热能转化为电能

纳米级发电厂:用石墨烯带将热能转化为电能 他回忆说:"当时,物理学家们刚刚开始谈论量子技术和量子计算机的潜力。如今,这一领域已有数十家初创公司,各国政府和公司正投资数十亿美元进一步开发这项技术。我们现在看到了计算机科学、密码学、通信和传感器领域的首批应用。"佩林的研究开辟了另一个应用领域:利用量子效应发电,能量损失几乎为零。为了实现这一目标,这位 36 岁的科学家结合了物理学中两个通常独立的学科:热力学和量子力学。米卡尔-佩兰。图片来源:SNF去年,佩兰的研究质量及其未来应用潜力为他带来了两项殊荣:他不仅获得了年轻研究人员梦寐以求的欧洲研究理事会启动基金之一,还获得了瑞士国家科学基金会 (SNS)F 的 Eccellenza 教授奖学金。现在,他在 Empa 领导一个九人研究小组,同时还是苏黎世联邦理工学院量子电子学助理教授。在阿姆斯特丹读完高中后,他于 2005 年开始在代尔夫特理工大学攻读应用物理学学位。从一开始,Perrin 就对具体应用比理论更感兴趣。正是在师从量子电子学领域的先驱 Herre van der Zant 时,佩兰第一次体验到了微米级和纳米级微小器件工程的魅力。他很快就意识到分子电子学带来的无限可能性,因为根据所选分子和材料的不同,电路具有完全不同的特性,可以用作晶体管、二极管或传感器。纳米工程的挑战在攻读博士学位期间,佩林在代尔夫特理工大学的纳米实验室洁净室里度过了大量时光全身始终笼罩在白色的罩子里,以防止毛发或灰尘颗粒污染微型电子设备。洁净室为制造几纳米大小的机器提供了技术基础(比人的头发直径小约 1 万倍)。佩兰解释说:"一般来说,你想建造的结构越小,你所需要的机器就越大、越贵。例如,光刻机用于在微芯片上绘制复杂的微型电路图案。纳米加工和实验物理学需要大量的创造力和耐心,因为几乎总会出错。然而,奇怪和意想不到的结果往往最令人兴奋"。博士毕业一年后,佩兰在米歇尔-卡拉梅(Michel Calame)的实验室获得了一个职位。从那时起,拥有法国和瑞士双重国籍的他就与伴侣和两个女儿居住在杜本多夫。在 Empa,这位年轻的研究员可以自由地继续进行纳米材料实验。一种材料很快引起了他的特别注意:石墨烯纳米带,一种由碳原子制成的材料,其厚度与单个原子一样薄。这些纳米带是由 Roman Fasel 在 Empa 的研究小组以最高精度制造的。佩林能够证明这些纳米带具有独特的性能,可用于一系列量子技术。与此同时,他开始密切关注将热能转化为电能。2018 年,事实证明量子效应可用于将热能有效地转化为电能。迄今为止,问题在于这些理想的物理特性只出现在极低的温度下接近绝对零度(0 开尔文;-273°C)。这与智能手机或微型传感器等未来潜在应用关系不大。佩林想到了利用石墨烯纳米带来规避这一问题。与其他材料相比,石墨烯纳米带的特殊物理特性意味着温度对量子效应的影响要小得多,因此也就更容易产生理想的热电效应。他在 Empa 的研究小组很快就证明,石墨烯纳米带的量子效应即使在 250 开尔文(即零下 23 摄氏度)的环境下也基本保持不变。未来,该系统有望在室温下也能工作。未来的挑战和雄心要使我们的智能手机使用更少的电能,还有许多挑战需要克服。极度微型化意味着不断需要特殊元件,以确保内置系统能够真正工作。佩林与来自中国、英国和瑞士的同事最近共同研究发现,直径仅为一纳米的碳纳米管可以作为电极集成到这些系统中。不过,佩林估计,至少还需要 15 年的时间才能大规模制造出这些精致而高度复杂的材料,并将其集成到设备中。"我的目标是研究出应用这项技术的基本依据。只有这样,我们才能评估其实际应用的潜力"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员发现了一种令人惊讶的简单方法来制造低温冷却器

研究人员发现了一种令人惊讶的简单方法来制造低温冷却器 低温冷却的实际应用数量惊人。它被用来保存组织、卵子、精子甚至胚胎。它使 CAT 扫描仪、欧洲核子研究中心的大型粒子加速器和某些磁悬浮系统成为可能。它有数以百计的工程应用,为詹姆斯-韦伯太空望远镜(James Webb Space Telescope)提供了探测太空深处的非凡能力,也许有一天会成为实现核聚变动力或量子计算机的关键。在超低温条件下,一些奇怪的物理学原理开始发挥作用。例如,超导性允许电流以零电阻通过某些材料。超流动性允许某些液体(如氦气)在没有任何粘度的情况下流动,此时它似乎开始无视正常规则,爬上并越过容器的边沿。接近绝对零度时,量子现象会减慢到我们可以实际利用它们的程度,可以开始得到玻色-爱因斯坦凝聚体,在这种凝聚体中,原子团不再像个体那样行动,而是聚集在一起,并同步进入相同的量子态,开始像'超级原子'那样行动。但在绝对零度附近工作的一个问题是,达到这一温度既昂贵又耗时。40 多年来,脉冲管冰箱(PTR)一直是达到 4 ºK (-452 ºF, -269 ºC) 或绝对零度以上四度温度的首选技术。它是一种简单得令人惊讶的机器,工作原理与厨房里的冰箱大致相同。PTR 使用的是压缩气体,气体膨胀时会产生热量。不过,PTR 使用的不是氟利昂或异丁烷,而是氦气这使它能够将物体冷却到物理学的理论极限。它可以工作,但要达到理想的冷却效果,需要花费数天时间和大量能源。美国国家标准与技术研究院(NIST)研究员瑞安-斯诺德格拉斯(Ryan Snodgrass)和他的团队研究了 PTR 的工作原理,试图找出提高其效率的方法。他们发现,所需要的是一个令人惊讶的简单修复方法。研究小组发现,PTR 在接近绝对零度的温度下工作得非常好,但在室温下,也就是必须开始冷却的温度下,它的效率却很低。他们发现,在较高温度下,氦气的压力非常高,以至于氦气一直被分流到溢流阀中,而没有起到任何冷却作用。通过调换压缩机和冰箱之间的机械连接,然后调整阀门,使其在流程开始时处于大开状态,并在冷却过程中逐渐关闭,他们可以实现更高的效率,并将冷却速度提高一半到四分之一,而这一切都不会浪费宝贵的氦气。据该研究小组称,如果新型冰箱的原型能够投放市场,取代现有设备,那么每年可节省 2700 万瓦特的电能,为全球节约 3000 万美元的电费,以及足够填满 5000 个奥林匹克游泳池的冷却水。这将大大改变一系列超冷技术的成本/效益等式。这项研究发表在《自然通讯》上。 ... PC版: 手机版:

封面图片

国产量子计算用温度计刷新纪录:可测宇宙最低温度

国产量子计算用温度计刷新纪录:可测宇宙最低温度 该产品测温极限接近6毫开尔文(mK),刷新了国内纪录,标志着我国超导量子计算极低温测量技术达到世界先进水平。氧化钌温度计是量子计算机的核心器件之一,可用于对量子芯片的工作环境进行测温。据介绍,“宇宙最低温度”通常指的是0开尔文,也被称为“绝对零度”(约零下273.15℃),是理论上能达到的热力学最低温度极限,而量子芯片正需要在接近“绝对零度”条件下运行。国盾量子表示,目前,国内氧化钌温度计主要依赖进口,没有能在10mK以下温区进行测量的国产替代产品。国盾量子此次推出的氧化钌温度计ezQ-RX56,主要应用于6mK-200mK温区的测量,测温极限6mK(接近-273.144℃),刷新了国内最低起测温度的纪录,并具有较高的测量精度和灵敏度,能实现连续测量和快速响应。与普通的氧化钌温度计相比,国盾量子氧化钌温度计的标定基准在20mK以下温区采用顺磁盐温度计,显著降低了标定过程的环境干扰和测量误差,大幅提高温度标定的准确性和可靠性。以上图源均来自“国盾量子”公众号 ... PC版: 手机版:

封面图片

SK海力士正在测试低温蚀刻设备 可在-70℃低温下生产闪存

SK海力士正在测试低温蚀刻设备 可在-70℃低温下生产闪存 与传统的蚀刻工艺相比,东京电子的这款低温蚀刻设备在工作温度上形成了鲜明对比。传统蚀刻工艺通常在0℃到30℃的温度范围内进行,而这款新设备能在-70℃的低温下运行,这样的低温环境为生产更高性能的3D NAND提供了可能。据东京电子提供的论文数据,这款新的蚀刻机能在短短33分钟内完成10微米深的高深度比蚀刻,效率比现有工具高出三倍以上。这一显著的技术进步不仅提高了3D NAND的生产效率,还有望进一步推动闪存技术的发展。目前,SK海力士的321层3D NAND采用了三重堆栈结构。而采用东京电子的新设备后,该公司可能实现以单堆栈或双堆栈的方式构建400层的3D NAND,这将进一步提升生产效率。然而,这一目标的实现还需等待新设备在可靠性及性能一致性方面的进一步验证。值得一提的是,东京电子的这款低温蚀刻设备在环保方面也表现出色。它采用氟化氢(HF)气体作为蚀刻介质,相较于传统系统使用的氟碳化物气体,具有更低的温室效应,为半导体行业的绿色发展提供了有力支持。此外,全球半导体巨头三星也在验证这一新技术。与SK海力士不同,三星选择了直接引进东京电子的新设备进行测试,显示出其对新技术的高度关注和积极态度。 ... PC版: 手机版:

封面图片

科学家在实验室制造出至今最冷物质

科学家在实验室制造出至今最冷物质 根据发表在《Nature Physics》期刊上的一项研究,日美科学家在实验室内制造出至今。 在最新研究中,科学家使用激光,限制了 30 万个原子在光学晶格内的运动。该实验模拟了理论物理学家约翰·哈伯德于1963年首次提出的量子物理模型哈伯德模型。该模型允许原子展示不寻常的量子特性,包括电子之间的集体行为,如超导(导电而不损失能量)等。研究人员称,他们造出的冷却物质甚至比太空中已知最冷的区域旋镖星云还要冷,旋镖星云距离地球 3000光年,是围绕在半人马座中一颗垂死恒星周围的一团气体云。科学家们认为,旋镖星云正被星云中心垂死恒星喷出的冷膨胀气体冷却,因此此处的温度比宇宙其他部分还要冷,约为 1 开尔文或零下272摄氏度,仅比绝对零度(零下273.15摄氏度)高1摄氏度。但在最新实验中,镱原子的温度比旋镖星云的温度还要低。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

蔚山科学技术院研发的量子点太阳能电池再次打破转化效率纪录

蔚山科学技术院研发的量子点太阳能电池再次打破转化效率纪录 不过,它们最终可能在太阳能电池中发挥最大作用。大多数商用太阳能电池都是用大块材料作为光收集层,这意味着整个表面吸收相同的波长。但量子点可以有多种尺寸,分别聚焦于光谱的不同部分,从而提高潜在效率。另外,量子点的成本低廉,易于制造,甚至可以制成喷雾溶液。在这项新研究中,蔚山科学技术院(UNIST)的研究人员对配方进行了一些调整,以改进技术。用有机材料制成的量子点太阳能电池理论效率最高,但不幸的是,它们存在缺陷,在阳光和天气条件下稳定性较差,这对于设计成全天暴露在阳光下的设备来说并不理想。为了解决这个问题,这些太阳能电池通常用无机材料代替,但这也限制了它们的效率。UNIST 团队用有机过氧化物制成量子点,并开发出一种将量子点锚定在基底上的新方法,从而使量子点能够更紧密地靠在一起。这将效率从2020 年的 16.6% 提高到了创纪录的 18.1%。美国国家可再生能源实验室(NREL)对这一记录给予了独立认可。更妙的是,新型太阳能电池的稳定性要好得多。在正常条件下,它们可以保持 1200 小时的满血运行,而在 80 °C (176 °F)的高温条件下,它们可以保持 300 小时的效率。存放两年后,它们的性能也同样出色。量子点太阳能电池要赶上日常使用的硅太阳能电池还有很长的路要走,针对后者的研发已经领先了半个世纪,且正在迅速接近其理论最高效率。与此同时,量子点从 2010 年左右才真正进入实验室,当时的效率还不到 4%。在提高效率的同时,廉价和简单的制造工艺有助于扩大技术规模,制造出更广泛的光伏表面。这项研究发表在《自然-能源》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人