研究人员称大脑对深度伪造声音的响应不同

研究人员称大脑对深度伪造声音的响应不同 根据发表在《自然》期刊上的一项研究,苏黎世大学研究人员发现,大脑对自然人声和深度伪造人声的处理方式不同。研究人员首先录制了四位男性的声音,然后使用一种转换算法(Conversion algorithm)生成深度伪造声音。25 名参与者在聆听了一对声音后被要求判断它们是否相同。参与者在三分之二的情况下正确识别了深度伪造人声。研究人员指出深度伪造声音确实能欺骗人,但尚不完美。研究人员随后用成像技术检查大脑,观察哪些区域对深度伪造声音和自然声音的反应不同。他们确定了两个能识别伪造声音的区域:伏隔核和听觉皮层。伏隔核是大脑奖励系统的关键组成部分。当参与者被要求判断深度伪造人声和自然人声是否相同时,其活跃性较低。当被要求对比两个自然人声时它相当活跃。 via Solidot

相关推荐

封面图片

研究人员发现掌管深度睡眠的关键脑电波的起源

研究人员发现掌管深度睡眠的关键脑电波的起源 了解海马体的活动可以改善睡眠和认知疗法。加利福尼亚大学欧文分校生物医学工程系的研究人员发现了对深度睡眠至关重要的两种基本脑电波慢波和睡眠纺锤波的新来源。传统上,人们认为这些脑电波仅起源于连接丘脑和大脑皮层的回路,而发表在《科学报告》上的研究小组的发现表明,海马体记忆中心的轴突也在其中发挥了作用。几十年来,慢波和睡眠棘波一直被认为是深度睡眠的基本要素,是通过头皮上的脑电图记录测量到的。然而,加州大学欧文分校领导的研究小组在海马体中发现了这些脑电波的新来源,并能在单个轴突中测量它们。该研究证明,慢波和睡眠棘波可能源自海马角3区的轴突。这些电压振荡的发生与神经元的尖峰活动无关,这对有关这些脑电波产生的现有理论提出了挑战。"我们的研究揭示了深度睡眠大脑活动中一个以前未被认识到的方面,"第一作者、前加州大学欧文分校生物医学工程专业本科生、现约翰霍普金斯大学研究生王梦柯(王梦柯在加州大学欧文分校学习期间进行了这项研究)说。"我们发现,通常与记忆形成有关的海马体在产生慢波和睡眠棘波方面起着至关重要的作用,这为我们了解这些脑电波如何在睡眠期间支持记忆处理提供了新的视角。"研究小组利用创新技术包括体外重建海马亚区和用于单轴突通信的微流体隧道观察了离体海马神经元的自发纺锤波。这些发现表明,纺锤形振荡源于轴突内活跃的离子通道,而非之前认为的通过体积传导。生物医学工程兼职教授格雷戈里-布鲁尔(Gregory Brewer)说:"在单个海马轴突中发现纺锤振荡为了解睡眠期间记忆巩固的内在机制开辟了新途径。这些发现对睡眠研究具有重大意义,有可能为治疗睡眠相关疾病的新方法铺平道路"。布鲁尔的其他研究机构包括记忆损伤和神经系统疾病研究所以及学习和记忆神经生物学中心。通过揭示海马在产生慢波和睡眠漩涡中的作用,这项研究拓展了我们对大脑在深度睡眠期间的活动及其对记忆处理的影响的认识。这些发现为今后探索针对海马活动的治疗潜力、改善睡眠质量和认知功能的研究奠定了良好的基础。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员开发出可抵御攻击和伪造的自毁电路

研究人员开发出可抵御攻击和伪造的自毁电路 一旦受到破坏,该系统就会提高电路上的工作电压,从而引发电迁移实际上就是将金属原子吹离原位,形成开路和空洞。类似的方法还可用于将工作电压从不到 1 伏提高到 2.5 伏左右,从而加速随时间变化的介质击穿,形成短路与损毁。Eric Hunt-Schroeder领导的团队与Marvell Technology公司合作完成了这个项目。Hunt-Schroeder 说,他是在读到研究人员能够使用扫描电子显微镜克隆基于 SRAM 的 PUF 后,受到启发而开发自毁机制的。这项技术还能有效防止假冒芯片充斥市场。Hunt-Schroeder 指出,当公司用完芯片后,他们可以确保芯片被销毁,使其毫无用处。自毁系统是会议期间重点介绍的几种新型安全技术之一。哥伦比亚大学的一个团队展示了一种能够检测电路上是否连接了探针的解决方案,这有助于抵御坏人对系统进行物理访问的攻击。与此同时,UT 奥斯汀分校的研究人员想出了一种方法,可以屏蔽来自电源和电磁源的信号。在测试中,研究小组在尝试了大约 500 次之后,就能从一个未受保护的芯片中获取密钥。而在有保护措施的情况下,即使尝试了 4000 万次,他们也无法破解密钥。 ... PC版: 手机版:

封面图片

研究人员利用声音培育土壤真菌 可恢复受损的生态系统

研究人员利用声音培育土壤真菌 可恢复受损的生态系统 研究发现,植物将声音视为一种机械刺激,可以促进养分流动、促进生长和增强免疫系统。现在,南澳大利亚弗林德斯大学(Flinders University)的一项新研究表明,土壤可能也是如此。研究人员调查了声刺激如何影响一种常驻土壤、促进植物生长的真菌,以及是否有可能利用声音来恢复受损的生态系统。"世界上超过 75% 的土壤已经退化,因此我们需要采取根本性措施来扭转这一趋势,并开始恢复生物多样性,"该研究的第一作者兼通讯作者杰克-罗宾逊(Jake Robinson)说。"这项研究让我们大吃一惊,与声波处于环境水平的对照组相比,一种常见的植物生长促进真菌的孢子细胞生物量的初始数量增加了近五倍"。研究人员首先将普通绿茶包和南非红茶包埋入地下,以促进真菌生物质(一种来自动植物的可再生有机材料)的生长。将茶包放置在隔音箱中,让它们暴露在 8 千赫的 70 分贝或 90 分贝单调声场中。实验开始时,所有茶包都看不到真菌生物量,但经过 14 天的声波刺激后,在 70 分贝和 90 分贝处理组中,绿茶包和红茶包以及每个茶包的内部和外部都明显出现了大量致密的真菌生物量。而在环境声低于 30 分贝的对照组茶包中,真菌生物量的可见度要低得多。研究人员随后在实验室环境中重复了这一实验,使用的培养皿中含有毛霉培养物。毛霉是一种有效的生物控制剂,能杀死多种土壤中的病原体,促进植物生长。20 个培养皿在 5 天内受到频率为 8 千赫的 80 分贝单调声波刺激;20 个培养皿没有受到任何刺激。到第五天,观察到声刺激对真菌生长、孢子生长和孢子密度有很大影响。在暴露于声音的培养皿中,孢子活动增加了约五倍。"我们实验室对恢复生态学的研究正在为改善原生植被的重新生长铺平道路,包括重新引入失去的物种,"该研究的共同作者马丁-布里德(Martin Breed)说。"我们对刺激土壤微生物活动潜力的研究利用了其他创新的可能性来帮助恢复自然。"重新植被后,土壤微生物需要几十年才能完全恢复。这项研究为加快这一过程提供了一种潜在的"生态声学"方法。还需要进一步研究声音对真菌生长的影响机制,并确定某些声音参数是否能针对特定的真菌种类。该研究的预印本可在bioRxiv 上查阅。 ... PC版: 手机版:

封面图片

一项新的研究发现,学生用手写笔记比用键盘打字学习效果更好,记忆也更牢固。研究人员通过脑部连接模式分析发现,写字时大脑的活动更加复

一项新的研究发现,学生用手写笔记比用键盘打字学习效果更好,记忆也更牢固。研究人员通过脑部连接模式分析发现,写字时大脑的活动更加复杂,有助于记忆和学习。 研究人员表示,精确控制的手部动作在书写过程中会产生视觉和运动信息,这些信息对大脑的连接模式有很大影响,而这些连接模式对于记忆形成和学习至关重要。 研究共同作者、挪威科技大学脑科学家奥德丽・范德梅尔 (Audrey van der Meer) 表示:“已有证据表明,学生用手写笔记可以学到更多东西,记忆也更牢固,但当需要写长篇文本或论文时,使用电脑和键盘可能更实用。” 研究团队在该研究中,记录了 36 名大学生的脑电活动,他们需要重复手写或键入屏幕上出现的单词。写字时,他们使用数字笔直接在触摸屏上书写;打字时,他们用一根手指按键盘上的按键。 研究人员发现,当参与者用手写时,不同大脑区域之间的连接会增强,而打字时则不会。相反,他们发现重复用同一根手指敲击按键的简单动作对大脑的刺激较小。 范德梅尔解释道:“这也可以解释为什么一些在平板电脑上学习写字和阅读的孩子难以区分镜像字母,例如‘b’和‘d’,他们实际上没有通过身体感受过写这些字母的感觉。” 虽然研究使用的是数字笔,但研究人员认为,用传统纸笔的手写效果应该也很相似。范德梅尔解释说:“我们的研究表明,大脑活动差异与手写时精心塑造字母轮廓、更多调动感官有关。” 研究人员呼吁在教育中重视手写练习,让学生有机会放下键盘拿起笔杆。他们建议制定最低的手写教学要求,并在不断发展的科技环境中,探索不同写作方式在不同场景下的优势和劣势。 via 匿名 标签: #记忆力 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

:为研究声学通讯的研究人员设计的神经网络框架 | #框架

:为研究声学通讯的研究人员设计的神经网络框架 | #框架 主要目标: 1.让研究声学通信的研究人员更轻松地将神经网络算法应用于他们的数据 2.提供一个通用框架,有助于在与声学通信相关的任务上对神经网络算法进行基准测试 目前,主要用途是发声和其他动物声音的自动注释。

封面图片

耶鲁大学研究人员发现助长妄想症的脑区

耶鲁大学研究人员发现助长妄想症的脑区 在不断变化的环境中调整对自己的行为及其后果的信念的能力,是高级认知的一个决定性特征。然而,如果这种能力受到破坏,就会对认知和行为产生负面影响,导致妄想症或认为他人意图伤害我们等心理状态。在一项新的研究中,耶鲁大学的科学家们揭示了大脑的一个特定区域是如何因果性地引发这些偏执情绪的。他们的新方法涉及将从猴子那里收集到的数据与人类数据进行比对,这也提供了一个新的跨物种框架,科学家可以通过对其他物种的研究更好地了解人类的认知。他们的研究结果和使用的方法最近发表在《细胞报告》杂志上。虽然过去的研究表明某些大脑区域与妄想症有关,但人们对妄想症神经基础的了解仍然有限。在这项新研究中,耶鲁大学的研究人员分析了多个实验室以前对人类和猴子进行研究的现有数据。在之前的所有研究中,人类和猴子都执行了相同的任务,该任务可以捕捉到参与者认为其所处环境的不稳定性。在每项研究中,参与者都会在屏幕上看到三个选项,它们与获得奖励的不同概率相关联。如果受试者选择了获得奖励概率最高的选项,他们在各次试验中点击的次数就会减少,从而获得奖励。而概率最低的选项则需要更多的点击才能获得奖励。而第三个选项则处于中间位置。参与者没有关于奖励概率的信息,只能通过反复试验找出最佳选项。经过一定次数的试验后,在没有任何警告的情况下,最高和最低奖励概率选项会翻转。耶鲁大学文理学院心理学和神经科学副教授、该研究的共同第一作者史蒂夫-张(Steve Chang)说:"因此,参与者必须找出什么是最佳目标,而当感知到环境发生变化时,参与者就必须找到新的最佳目标。"参与者在翻转前后的点击行为可以揭示他们认为环境的不稳定性,以及他们的行为在不断变化的环境中的适应性。耶鲁大学医学院精神病学副教授、本研究的共同第一作者菲利普-科莱特(Philip Corlett)说:"我们不仅使用了猴子和人类执行相同任务的数据,还对这两个数据集进行了相同的计算分析。计算模型本质上是一系列方程,我们可以用它来尝试解释行为,在这里,它充当了人类和猴子数据之间的共同语言,让我们可以将两者进行比较,看看猴子的数据与人类的数据有什么联系。"在之前的研究中,一些猴子的两个脑部区域中的一个发生了微小但特殊的病变:眶额皮层(与奖赏相关的决策相关)或丘脑内侧(将环境信息发送到大脑的决策控制中枢)。在人类参与者中,有些人曾报告过高度妄想症,有些人则没有。研究人员发现,两个脑区的病变都会对猴子的行为产生负面影响,但影响的方式不同。眶额皮层受损的猴子即使没有得到奖励,也会更经常地坚持相同的选择。而丘脑内侧受损的猴子则表现出不稳定的切换行为,即使在获得奖励后也是如此。他们似乎认为自己所处的环境特别不稳定,这与研究人员在患有高度妄想症的人类参与者身上观察到的情况类似。研究人员说,这些发现提供了新的信息,让人们了解人脑中发生了什么,以及丘脑内侧在人们出现妄想症时可能扮演的角色。它们还为如何在更简单的动物身上研究复杂的人类行为提供了一条途径。科莱特说:"这让我们能够提出这样的问题:如何将我们在更简单的物种比如大鼠、小鼠,甚至无脊椎动物身上学到的知识转化为对人类认知的理解。这种方法还能让研究人员评估影响妄想症等状态的药物治疗在大脑中的实际作用。也许下一步,我们可以利用它找到减少人类妄想症的新方法。"编译来源:ScitechDailyDOI: 10.1016/j.celrep.2024.114355 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人