【#散光的眼球就像一颗橄榄球#】顾名思义,散光是指视物时光线“散开”了,塑造的影像便会十分模糊。

【#散光的眼球就像一颗橄榄球#】顾名思义,散光是指视物时光线“散开”了,塑造的影像便会十分模糊。 打个比方,如果正常眼球是一个完全对称的足球,四面八方的光线经过球体的折射聚焦在视网膜上的一点,便可形成清晰的影像。一旦出现散光,眼球就变成一个橄榄球,是歪的、扁的,光线进入眼球后会发生偏移,折射后无法聚焦于一点,于是视网膜上形成一个“发散”的影像,多是“条带状”的重影。而近视是指足球的前后径(眼轴)被拉长了,导致光线的焦点聚焦在视网膜前,让人把一个小点看成模糊的球状。 via 生命时报的微博

相关推荐

封面图片

【#为什么很多眼科医生自己不做近视手术#】近视手术主要通过切削角膜或植入人工晶体两种方式,改变眼球屈光度,使光线重新聚焦在视网膜

【#为什么很多眼科医生自己不做近视手术#】近视手术主要通过切削角膜或植入人工晶体两种方式,改变眼球屈光度,使光线重新聚焦在视网膜上。具体的手术方式要根据个人的眼睛检查参数而定,而#眼科医生不做近视手术其实是个误区#生命时报的微博视频 via 生命时报的微博

封面图片

新型螺旋多焦点镜片眼镜能让视力不佳者看得更清晰、更远

新型螺旋多焦点镜片眼镜能让视力不佳者看得更清晰、更远 研究人员开发出一种新型透镜,利用螺旋形表面在不同光线条件下保持不同距离的清晰聚焦。我们眼睛中的镜片会自然地将光线聚焦到视网膜上,但遗传、环境或年龄等因素会扰乱焦点。如果太靠前或太靠后,世界就会变得模糊不清。值得庆幸的是,矫正镜片可以根据每个人的不同需求,通过特定的弧度、厚度和形状来抵消这种情况。镜片通常只有一个焦点,但现在多焦点镜片也很常见例如,你的眼镜上端可能是远视矫正,下端可能是阅读矫正。但这些镜片可能会出现变形或其他问题。在这项新研究中,法国光子学、数值和纳米科学实验室(LP2N)的科学家们开发出了一种新型透镜,他们称之为"螺旋屈光镜"。顾名思义,这种镜片呈螺旋状,能在视野中形成三个不同的焦点。这项研究的作者伯特兰-西蒙(Bertrand Simon)说:"与现有的多焦点镜片不同,我们的镜片在各种光线条件下都表现良好,而且无论瞳孔大小如何,都能保持多焦点性。对于潜在的植入用户或老年性远视患者来说,它可以提供持续清晰的视力,有可能给眼科带来革命性的变化"。螺旋设计产生了所谓的光学漩涡,基本上就像下水道里的水流淌一样,让光线旋转起来。新透镜是利用先进的数字加工技术模压成螺旋状的,研究小组可以通过改变螺旋的扭曲程度来调整透镜的质量。测试镜头的方法很老套看光板上的数字字母看起来有多清晰。志愿者们表示,在不同的距离和不同的照明条件下,图像看起来都更加清晰。但这并不是一个完美的解决方案。传统镜片在特定距离上看起来非常清晰,但在其他距离上却非常模糊,而新镜片则将其平均化,使观众在整个范围内都能获得足够清晰的视力,但却无法达到普通镜片的峰值。这听起来像是一种权衡,但在某种程度上,它与Presbyond 手术的原理类似,后者使用激光将两只眼睛矫正到不同的焦点,以获得更好的平均清晰度。这种新型透镜可用于隐形眼镜(如图所示)、治疗白内障的眼内植入物以及制造新型微型成像系统。该团队计划研究新镜片在现实世界中矫正视力的效果,并表示它还能改进其他技术。西蒙说:"这种新型透镜可以大大改善人们在光线变化条件下的视觉深度。这项技术的未来发展还可能带来紧凑型成像技术、可穿戴设备以及无人机或自动驾驶汽车遥感系统的进步,从而使它们更加可靠和高效。"这项研究发表在《光学》杂志上。 ... PC版: 手机版:

封面图片

技术原理解读激光雷达安全性:对人眼安全吗?

技术原理解读激光雷达安全性:对人眼安全吗? 1.你可能会问,激光雷达安全吗?然而,随着激光雷达技术的广泛应用,人们也开始对其是否安全产生一丝担忧。当我们提到“激光”这个词时,很多人可能会想到科幻电影中的高科技武器。而将“激光”与“雷达”结合在一起而形成“激光雷达”时,其产生的激光线束,会不会对我们的眼睛造成伤害呢?2.国际标准如何定义激光产品首先,我们来看下权威的国际电工委员会标准(IEC 60825-1:2014),对激光产品是如何定义的?激光器的危险等级被划分为四类:Class 1激光器无害,Class 4激光器具有高危险性,Class 2和3激光器分别具有低和中度危险性。车载激光雷达属于Class 1激光产品,其功率和辐射强度远低于对人体眼睛造成伤害的阈值。因此,在正常使用条件下,车载激光雷达不会对人眼构成威胁。或者说市面上能量产的车载激光雷达产品,都需要满足Class 1级别标准。“Class 1”就像是一张激光雷达的“身份证”,有了这张“身份证”,车载激光雷达才能算合格产品。3.技术原理解读激光雷达安全性再者,从技术原理来看下这个问题。人眼是否受到伤害,主要取决于激光发出的能量密度是否超过人眼可接受的阈值。能量密度:看的是“单脉冲的瞬时照射能量”和“持续长时间照射后的单位面积内的平均累积能量”。首先,单脉冲的瞬时能量,可以通过严格控制激光雷达的发射功率来保障,限制其不超出标准要求阈值;其次,当前市面上主流的车载激光雷达,都是扫描式雷达,以线扫雷达举例,每次发射一条激光线束,覆盖其中某一个位置,借助于转镜的转动,把激光束从左扫到右,从而覆盖一个120°的完整画幅,可以参考下图所示,这确保了激光雷达不会一直“盯”着你的眼睛照射,单位面积内的累积能量同样限定在阈值以内。非扫描式(上) vs 扫描式激光雷达(下)示意图再来看下人眼的生理构造,人眼主要包含角膜,晶状体和视网膜组成。当激光束进入人眼后,不同波长表现会有些许不同。市面上当前主流车载激光雷达主要在905nm波长的近红外光波段,少数激光雷达为1550nm的远红外光。当905nm的激光束进入人眼后,会被角膜和晶状体吸收大部分能量,小部分透射到视网膜上,而1550nm的激光束,几乎会被角膜和晶状体全部吸收,极少会到视网膜上,所以网上就有了1550nm激光雷达比905nm更安全的说法。但实际上,基于上文描述,激光雷达的能量只要控制在人眼可接受的阈值内都是安全的,不存在谁比谁更安全的说法。诚然1550nm比905nm在人眼安全的功率上限更高些,但如果1550nm的激光器的能量超过法规限制范围,那么它同样会损伤人眼的角膜和晶状体。同理,905nm如果能量超了,也会伤害视网膜。4.还有疑虑?再看看实验结果怎么说最后,再从国际标准测试下的数据来量化看下这个问题,如下测试实验装置中,接收孔径模拟人眼瞳孔,正常情况下,瞳孔直径为2.5~4mm,遇到强光会收缩,暗室环境瞳孔会放大到5~7mm,本测试采用7mm孔径模拟瞳孔张开能达到的极限场景(即最大通光量),测试距离也是采取最严苛的100mm~1m的距离范围内进行全量测试,随着距离的增加,激光束能量会快速衰减。100mm是人眼能聚焦的最短距离,再近就无法在视网膜成像。基于如上苛刻的测试场景评估,激光束进入人眼的效率只有1%左右,再被眼球中的水大量吸收,到达视网膜的能量,通常只有人眼损伤阈值的20%左右。值得一提的是,IEC60825-1标准也同时考虑了皮肤安全,经过实验测算,当前激光雷达的能量才到安全阈值的1%。所以,通过人眼安全Class 1严格认证的车载激光雷达产品,对人眼和皮肤都是没有危害的。5.多激光雷达环境的安全性问题最后,再探讨下多激光雷达环境的安全性问题。随着智能驾驶技术的不断进步,越来越多的车辆开始采用激光雷达来提高感知能力。有小伙伴开始担心,满大街的都是装激光雷达的车,是否以后门都不敢出了,这种多激光雷达环境是否会对人眼安全产生新的影响呢?目前来看,最恶劣的场景莫过于大路口并排多车等红绿灯,行人从斑马线穿过的场景,并排4~5车道已经是非常大的主干道,激光雷达的数量并不会无限增加,如上图示意。分析多激光雷达对人眼的影响,主要从三方面考虑:交叠区距离,汇聚概率,汇聚时长。1.交叠区距离:基于几何原理,多台激光雷达要形成交叠区,数量越多,交叠区离雷达的距离越远,从上图所示,4台激光雷达光束交叠区最近距离为行人所处位置,分别离4台激光雷达的距离为(6米,3.5米,3.5米,6米),能量随距离快速衰减,经过测算,距离到达6米后,到达视网膜的能量快速衰减到人眼损伤阈值的1%以内,路口二排三排的车几乎可以忽略不计,空间角度上就大幅抵消了多激光雷达的能量累积;2.汇聚概率:基于上文的原理分析,激光雷达采用的是扫描方式,要让多台激光雷达在同一时间汇聚到7mm孔径的瞳孔上的概率微乎其微,经过测算,这个概率是亿分之一的量级;3.汇聚时长:即使T1时刻,4台激光雷达非常凑巧汇聚到一点上了,T2时刻,随着激光雷达转过一定角度后,光束便无法再汇聚在瞳孔上,从时间角度避免能力累积。综上所述,不管单激光雷达,还是多激光雷达,其发射出的激光束在正常使用条件下,不会对人眼构成实质性的威胁。国际标准如IEC 60825-1的制定和执行,以及激光雷达制造商对产品安全的严格把控,都为人眼安全提供了坚实的保障。激光雷达作为智能驾驶的核心技术,正在发挥越来越大的作用。从网上视频可以看到,装载了激光雷达的高阶智能驾驶系统所提供的主动安全AEB制动能力,大幅降低突发的碰撞风险,正在避免一次又一次的交通事故。 ... PC版: 手机版:

封面图片

5种最奇怪的动物眼睛:它们看到的世界 我们无法想象

5种最奇怪的动物眼睛:它们看到的世界 我们无法想象 有一些眼睛我们很好理解,比如食草动物的水平瞳孔让它们能够看到周围环境的全景,这有助于它们看到捕食者的到来,并在逃跑时避开障碍物,而夜间掠食者的瞳孔是垂直的,可以最大限度地提高夜视能力。然而,在这个壮丽、广阔、多样化的世界中,还有其他种类的眼睛以我们无法想象的方式观看世界。下面是已知的5种世界上最奇怪的眼睛。石鳖 Hans Hillewaert一、不是眼睛的眼睛石鳖当您想到眼睛时,您肯定会想到它至少是由细胞构成的,但是这种叫作石鳖的奇怪海洋软体动物,它们的眼睛是由“石头”构成的。这些小型生物是多板纲的,它们身体的外面被一个厚厚的连锁“板甲”保护着,完全融入周围的岩石中,难以被人发现。它们在岩石上爬行,吃着在那里发现的任何东西,但如果您沿着它甲壳的周边和底部寻找它们的眼睛的话,那么您根本找不到哪个器官可以当作眼睛来用。当然,石鳖是有眼睛的,只是它们没有常规柔软的眼睛,它们的眼睛在它们的甲壳上,并且是由矿物制成的更具体地说是一种称为文石的碳酸钙。另外,石鳖还不止一对眼睛,它和一些软体动物一样拥有许多眼睛,只是石鳖的眼睛是无规则地散布在它们的甲壳表面。图源:哈佛大学维斯研究所如上图,深色部分就是石鳖的眼睛,这些眼睛由一个文石晶状体和某种视网膜组成,被称为微眼(aesthetes),它们甲壳上有数百个这样的微眼,组成一个复杂的视觉网络,可以吸收光线解析图像。科学界至今都没有搞清楚,石鳖的视觉信息是如何被大脑处理的,但它们可以帮助我们更好地理解过去眼睛进化所经历的一些疯狂的事。首先,不难发现,这种眼睛是非常原始的,最古老的石鳖化石可以追溯到4亿年前,它是古老的生物,并保留了包括眼睛在内的一些古老特征。其次,科学家推测已灭绝的三叶虫也有眼睛,也是由矿物组成其晶状体是由方解石制成的,三叶虫的眼睛可能就是动物史上第一个真正复杂的眼睛。所以,研究石鳖可以帮助我们了解很多关于地球上动物视觉的进化。图:螳螂虾二、真正的超能眼睛螳螂虾在动物王国中,已知的最复杂的眼睛属于底栖海洋甲壳类动物螳螂虾。人类可以看到色彩斑斓的世界,其实我们的眼睛在哺乳动物中已经是非常强大的,大部分哺乳动物的眼睛看不到这么多颜色,这和哺乳动物在过去通常在夜间活动有关系。决定眼睛看到多少颜色是眼睛中的视锥细胞,而决定眼睛能在夜间看到东西的是视杆细胞,人类有三种视锥细胞分别对红绿蓝三个可见光波段敏感,以及一种视杆细胞它对自然光的大部分波长都敏感,但它无法分辨彼此。这4种光感受细胞构成了我们的视觉,三种视锥细胞的相互作用让我们看到了彩色世界,而丰富的视杆细胞让我们在夜晚也能看到事物(人眼拥有1.2亿个视杆细胞,而三种视锥细胞总共只有600万个)。螳螂虾眼睛特性  Cédric Peneau螳螂虾是一种色彩缤纷的小型虾蛄,这可能和它们异常强大的眼睛也有关系,它们的复眼里拥有16种光感受细胞是已知最多的。其中12种是用颜色相关的,具有常见的彩色感光细胞,以及对紫外线敏感的感光细胞,看到紫外线并不特别,有许多动物都能做到,但是螳螂虾可以看到五个不同的紫外线频段。另一方面,它们还可以看到偏振光。与看到紫外线一样,也有很多动物可以看到偏正光,但是螳螂虾是唯一能看到圆偏振光的动物。由于研究人员已经证明,快速生长、混乱的癌细胞实际上与健康组织会不同地反射偏振光,所以螳螂虾被认为可以在症状出现之前发现癌症。现在有许多科学团队正在积极仿生它们的眼睛,以设计出能够提前看到癌症的相机。除此之外,螳螂虾的每只眼睛都能独立移动,而且单个眼睛就能感知到深度,而包括人类在内的大部分动物只能通过两只眼睛相互作用来感受深度。麻雀,眼睛看起来很深邃  Fir0002三、看到地球磁场一些鸟类鸟类有着又小又圆的眼睛,但它们的眼睛比我们强大许多。我们前面提到过,人眼有4种光感受细胞,而大部鸟类有6种,4种视锥细胞比我们多的一种就是对紫外线敏感的,以及1种视杆细胞和1种不寻常的双视锥细胞可提供非彩色运动感知。这似乎没法和螳螂虾相提并论,但是有一些候鸟在这个基础上可以看到地球的磁场,以此帮助它们导航,从而完成跨洲的超远迁徙。图源:Jillian Ditner长时间以来,人们并不清楚那些长距离迁徙的候鸟是如何完成迁徙的,直到最近,科学家将其中的原因范围缩小到一类被称为隐色素的光敏蛋白质。这种蛋白质依赖蓝光,这表明鸟类的磁感受可能是基于视觉的。四眼鱼  Quartl四、一眼两用四眼鱼“四眼鱼”听起来视乎是长了四只眼睛一样,其实并不是的,它们只有两个眼睛,只是和身体相比显得特别大,而且这双大眼睛已经进化出令人难以置信的适应能力。它们的生态位是水面,它们大部分时间都花在水面上,捕食那些在水生生态系统周围盘旋的昆虫。它们大大且凸起的眼睛有助于它们露出空气,并更好的看到飞虫,但有意思的地方是,它们眼睛很大,以至于有一半是在水下的,这让事情变得相当有趣。它们的每个瞳孔分为两半,其中一半位于水线上方(背侧),而另一半位于水线下方(腹侧) 。通过这种方式,四眼鱼可以同时看到水面和水下光线传播不同的环境以观察捕食者和猎物。Charles J. Sharp更有趣的地方是,水面和水下部分晶状体的厚度是有所不同的,以适应空气和水生介质的不同折射率。另外,角膜上皮的厚度也不同,视网膜感光细胞中的蛋白质也略有不同水面视网膜对绿光更敏感,水下视网膜对黄光更敏感。一只眼睛拥有两种完全不同的适应,叫它们四眼鱼并不为过。五、另类看色彩方式乌贼乌贼的眼睛拥有奇怪的W型瞳孔,让它们显得有点独特,现在生物学家已经确定这种特征有助于它们平衡垂直不均匀的光场,这是它们栖息的水深处常见的适应。但乌贼独特的地方是,它们的眼睛只拥有一种光感受细胞,但却可以看到不同颜色,甚至可能看到我们不知道的颜色。乌贼独特的瞳孔可以促进一种完全有别于其它动物观察颜色的方式利用光线穿过棱镜分裂成色彩的方式。当我们眼睛里的晶状体无法将颜色聚焦在同一点上时,就会出现所谓的色差,从而将鲜明的阴影对比度变成不同色调,乌贼可能把这个我们眼睛的问题变成了解决方案。当不可避免出现色差时,瞳孔越小色差就越小,因此瞳孔较宽的乌贼非常容易出现这种情况,这会让乌贼看到的图像变得模糊。但是这种模糊可以带给它们不一样的“颜色体验”,这就解释了为什么乌贼只有一种感光细胞却能让身体颜色与环境相协调进行伪装。另外,乌贼的眼睛还可以旋转,最近科学家发现这些旋转的眼睛会产生立体视觉,这也是乌贼有别于其它动物看到深度的方式。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人