韩国禁止填埋厨余垃圾,政府建立了数百个处理设施,将它们转化为动物饲料、肥料和家庭取暖燃料。这种方式广受赞扬,但批评人士称,它并未

None

相关推荐

封面图片

新型太阳能技术可将温室气体转化为燃料和有用化学品

新型太阳能技术可将温室气体转化为燃料和有用化学品 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 在太阳光的集中照射下,这种复合材料在甲烷与二氧化碳的干转化(DRM)过程中表现出卓越的性能,合成气进化率达到 180.9 mmol gcat-1 h-1,选择性达到 96.3%。与传统催化系统相比,这是一项重大改进,因为传统催化系统通常需要高能量输入,而且会迅速失活。"我们的工作代表着在应对温室气体排放和可持续能源生产双重挑战方面迈出的重要一步,"上海交通大学首席研究员周宝文教授说。"通过利用太阳能和合理设计的纳米结构,我们展示了一条将废气转化为宝贵化学资源的绿色高效路线。"研究人员探索了Rh/InGaN1-xOx纳米线在光照驱动下与二氧化碳进行甲烷干转化制合成气(CH4+CO2+ light = 2CO + 2H2)的应用。该研究提出,用 O 部分取代 InGaN 中的 N 可以大大提高催化剂在光照下的活性和稳定性,而无需额外加热。研究人员将其光催化剂的卓越性能归功于光活性 InGaN 纳米线、氧修饰表面和催化活性铑纳米颗粒的整合所产生的协同效应。机理研究表明,结合的氧原子在促进二氧化碳活化、促进一氧化碳生成和抑制催化剂因焦化沉积而失活方面起着至关重要的作用。这项研究成果发表在著名的《科学通报》杂志上,为开发先进的光催化系统,利用可再生资源可持续地生产燃料和化学品铺平了道路。研究小组相信,他们的方法可以推广到其他重要的化学反应中,为绿色化工提供新的机遇。周宝文教授说:"我们对这项技术的前景感到兴奋。"通过进一步优化催化剂设计和反应器配置,我们的目标是扩大该工艺的规模,并证明其在实际应用中的可行性。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新型反应堆系统将二氧化碳转化为可用燃料

新型反应堆系统将二氧化碳转化为可用燃料 锅炉的效率通常很高。因此,仅靠提高燃烧效率很难减少二氧化碳排放。因此,研究人员正在探索其他方法,以减轻锅炉排放的二氧化碳对环境的影响。为此,一个很有前景的策略是捕获这些系统排放的二氧化碳,并将其转化为有用的产品,如甲烷。要实施这一战略,需要一种特殊类型的膜反应器,即分配器型膜反应器(DMR),它既能促进化学反应,又能分离气体。虽然 DMR 已在某些行业中使用,但其在将二氧化碳转化为甲烷方面的应用,尤其是在锅炉等小型系统中的应用,仍相对较少。由日本芝浦工业大学的野村干弘教授和波兰 AGH 科技大学的 Grzegorz Brus 教授领导的一组日本和波兰研究人员填补了这一研究空白。他们的研究成果最近发表在《二氧化碳利用期刊》上。来自日本和波兰的研究人员开发出一种反应堆设计,可有效捕捉二氧化碳排放并将其转化为可用的甲烷燃料。这一突破可大幅减少温室气体排放,为实现碳中和的未来铺平道路。资料来源:日本 SIT 的野村干弘教授研究小组双管齐下,通过数值模拟和实验研究来优化反应器设计,以便将小型锅炉中的二氧化碳高效转化为甲烷。在模拟过程中,研究小组模拟了气体在不同条件下的流动和反应。这反过来又使他们能够最大限度地减少温度变化,确保在甲烷生产保持可靠的同时优化能源消耗。研究小组还发现,与将气体导入单一位置的传统方法不同,分布式进料设计可以将气体分散到反应器中,而不是从一个地方送入。这反过来又能使二氧化碳更好地分布在整个膜中,防止任何位置过热。野村教授解释说:"与传统的填料床反应器相比,这种 DMR 设计帮助我们将温度增量降低了约 300 度。"除了分布式进料设计,研究人员还探索了影响反应器效率的其他因素,并发现一个关键变量是混合物中的二氧化碳浓度。改变混合物中的二氧化碳含量会影响反应的效果。"当二氧化碳浓度为 15%左右(与锅炉中的二氧化碳浓度相似)时,反应器生产甲烷的效果要好得多。事实上,与只有纯二氧化碳的普通反应器相比,它能多产生约 1.5 倍的甲烷,"野村教授强调说。此外,研究小组还研究了反应器尺寸的影响,发现增大反应器尺寸有助于为反应提供氢气。不过,需要考虑一个折衷的问题,因为提高氢气可用性的好处需要谨慎的温度管理,以避免过热。因此,这项研究为解决温室气体排放的主要来源问题提供了一个前景广阔的解决方案。通过利用 DMR,可以成功地将低浓度二氧化碳排放转化为可用的甲烷燃料。由此获得的益处不仅限于甲烷化,还可应用于其他反应,从而使这种方法成为高效利用二氧化碳的多功能工具,甚至适用于家庭和小型工厂。这项研究得到了波兰国家机构、克拉科夫 AGH 大学和日本科学促进会的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

甘蔗基因组的完整图谱首次完成绘制 蕴藏将甘蔗转化为绿色燃料的方法

甘蔗基因组的完整图谱首次完成绘制 蕴藏将甘蔗转化为绿色燃料的方法 共同作者、昆士兰农业和食品创新联盟的罗伯特-亨利教授说,甘蔗是世界上 20 种主要作物中最后一种绘制了基因组图谱的作物。亨利教授说:"这标志着甘蔗基因组革命的开始,现在我们拥有了与其他作物公平竞争的知识。虽然这一基因组测绘将成为帮助创造更多抗性甘蔗作物的工具,但它也是我们将甘蔗和其他植物生物质转化为航空燃料的其他研究向前迈出的重要一步"。这张图片显示的是基因排序图(使用 GENESPACE 创建),它比较了相关植物物种的基因组组装情况。水平白线代表染色体,连接染色体的彩色编织线表示保守的基因块。这样,研究人员就能将研究得比较透彻的作物(如双色高粱,一种特殊的高粱)中的保守基因追踪到更复杂的基因组中,如野生甘蔗和栽培品种 R570,从而更好地了解它们的功能。为了形成对比,上一行提供了 R570 先前的单倍体组合,其中基因组中的多个染色体拷贝被表示为一个单一的马赛克组合。图片来源:Adam Healey 和 John Lovell/HudsonAlpha可再生碳和甘蔗的潜力亨利教授正在开发从植物生物质中提取的可再生碳产品,以用作具有成本效益和可持续发展的航空燃料,这是澳大利亚研究理事会植物替代化石碳工程研究中心(ARC Research Hub for Engineering Plants to Replacement Fossil Carbon)工作的一部分。他说:"传统上,甘蔗只是为了制糖而培育的,但现在随着净零排放目标的实现,人们对世界上产量最高的作物之一成为可再生碳源产生了浓厚的兴趣。这张基因组图谱将帮助我们生产出甘蔗,它是替代化石碳的更好原料"。对甘蔗研究和产业的影响首席研究员、澳大利亚联邦科学与工业研究组织(CSIRO)研究科学家凯伦-艾特肯(Karen Aitken)博士说,基因组测绘方面的突破通过利用以前无法获得的甘蔗遗传多样性,解决了蔗糖产量停滞不前的严峻挑战。艾特肯博士说:"这是甘蔗研究向前迈出的重要一步,将提高我们对甘蔗产量、对不同环境条件的适应性以及抗病性等复杂性状的认识。这是首个完成的优质甘蔗品种基因组,代表了全球科学家 10 年合作努力的重大科学成就。这些知识为我们提供了新的工具,以加强世界各地针对这种宝贵的生物能源和粮食作物的育种计划。"澳大利亚糖业研究中心细胞遗传学家 Nathalie Piperidis 博士说,该序列的公布将创造大量机会,澳大利亚糖业研究协会为参与这一了不起的成就感到无比自豪。"这项工作不仅有望增进我们对这种神奇作物的了解,而且还将提供前所未有的方法来推动行业内的育种技术,以生产一系列可再生和商业上可行的产品,其中包括但远不止蔗糖"。研究论文发表在《自然》杂志上。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人