甘蔗基因组的完整图谱首次完成绘制 蕴藏将甘蔗转化为绿色燃料的方法

甘蔗基因组的完整图谱首次完成绘制 蕴藏将甘蔗转化为绿色燃料的方法 共同作者、昆士兰农业和食品创新联盟的罗伯特-亨利教授说,甘蔗是世界上 20 种主要作物中最后一种绘制了基因组图谱的作物。亨利教授说:"这标志着甘蔗基因组革命的开始,现在我们拥有了与其他作物公平竞争的知识。虽然这一基因组测绘将成为帮助创造更多抗性甘蔗作物的工具,但它也是我们将甘蔗和其他植物生物质转化为航空燃料的其他研究向前迈出的重要一步"。这张图片显示的是基因排序图(使用 GENESPACE 创建),它比较了相关植物物种的基因组组装情况。水平白线代表染色体,连接染色体的彩色编织线表示保守的基因块。这样,研究人员就能将研究得比较透彻的作物(如双色高粱,一种特殊的高粱)中的保守基因追踪到更复杂的基因组中,如野生甘蔗和栽培品种 R570,从而更好地了解它们的功能。为了形成对比,上一行提供了 R570 先前的单倍体组合,其中基因组中的多个染色体拷贝被表示为一个单一的马赛克组合。图片来源:Adam Healey 和 John Lovell/HudsonAlpha可再生碳和甘蔗的潜力亨利教授正在开发从植物生物质中提取的可再生碳产品,以用作具有成本效益和可持续发展的航空燃料,这是澳大利亚研究理事会植物替代化石碳工程研究中心(ARC Research Hub for Engineering Plants to Replacement Fossil Carbon)工作的一部分。他说:"传统上,甘蔗只是为了制糖而培育的,但现在随着净零排放目标的实现,人们对世界上产量最高的作物之一成为可再生碳源产生了浓厚的兴趣。这张基因组图谱将帮助我们生产出甘蔗,它是替代化石碳的更好原料"。对甘蔗研究和产业的影响首席研究员、澳大利亚联邦科学与工业研究组织(CSIRO)研究科学家凯伦-艾特肯(Karen Aitken)博士说,基因组测绘方面的突破通过利用以前无法获得的甘蔗遗传多样性,解决了蔗糖产量停滞不前的严峻挑战。艾特肯博士说:"这是甘蔗研究向前迈出的重要一步,将提高我们对甘蔗产量、对不同环境条件的适应性以及抗病性等复杂性状的认识。这是首个完成的优质甘蔗品种基因组,代表了全球科学家 10 年合作努力的重大科学成就。这些知识为我们提供了新的工具,以加强世界各地针对这种宝贵的生物能源和粮食作物的育种计划。"澳大利亚糖业研究中心细胞遗传学家 Nathalie Piperidis 博士说,该序列的公布将创造大量机会,澳大利亚糖业研究协会为参与这一了不起的成就感到无比自豪。"这项工作不仅有望增进我们对这种神奇作物的了解,而且还将提供前所未有的方法来推动行业内的育种技术,以生产一系列可再生和商业上可行的产品,其中包括但远不止蔗糖"。研究论文发表在《自然》杂志上。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

比人类基因组更复杂 甘蔗基因组图谱的绘制标志着一个科学里程碑

比人类基因组更复杂 甘蔗基因组图谱的绘制标志着一个科学里程碑 现代杂交甘蔗简介现代杂交甘蔗是地球上收获最多的作物之一,用于制造糖、糖蜜、生物乙醇和生物基材料等产品。它也拥有最复杂的基因蓝图。迄今为止,甘蔗复杂的遗传学使其成为最后一种没有完整和高度精确基因组的主要作物。科学家们开发并结合多种技术,成功绘制出甘蔗的遗传密码图。有了这张地图,他们就能验证抗褐锈病的具体位置,这种褐锈病如果不加以控制,就会对糖料作物造成毁灭性打击。研究人员还可以利用基因序列更好地了解糖类生产中涉及的许多基因。甘蔗遗传研究进展这项研究是美国能源部联合基因组研究所(JGI)社区科学计划的一部分,JGI是能源部科学办公室在劳伦斯伯克利国家实验室(伯克利实验室)的用户设施。该研究于3月27日发表在《自然》杂志上,基因组可通过JGI的植物门户网站Phytozome获取。"这是我们迄今为止完成的最复杂的基因组序列,"JGI 植物项目负责人、哈德逊阿尔法生物技术研究所(HudsonAlpha Institute for Biotechnology)研究员杰里米-施穆茨(Jeremy Schmutz)说。"这表明我们已经取得了很大进展。这种事情在 10 年前人们认为是不可能的。我们现在能够实现我们认为在植物基因组学领域不可能实现的目标"。甘蔗的基因组之所以如此复杂,一方面是因为它体积庞大,另一方面是因为它比一般植物含有更多的染色体拷贝,这一特征被称为多倍体。甘蔗有大约 100 亿个碱基对(DNA 的组成单位);相比之下,人类基因组大约有 30 亿个碱基对。甘蔗 DNA 的许多片段在不同染色体内部和之间都是相同的。因此,在重建完整基因蓝图的同时,正确重组所有小段 DNA 是一项挑战。研究人员将多种基因测序技术结合起来,包括一种新开发的名为 PacBio HiFi 的测序方法,这种方法可以准确确定较长 DNA 片段的序列,从而解决了这一难题。了解和利用甘蔗基因组有了完整的"参考基因组",研究甘蔗就更容易了,研究人员可以将甘蔗的基因和通路与其他研究得比较透彻的作物(如高粱或其他感兴趣的生物燃料作物,如开关草和马齿苋)的基因和通路进行比较。通过与其他作物进行比较,可以更容易地了解每个基因是如何影响相关性状的,例如哪些基因在制糖过程中高度表达,或者哪些基因对抗病性很重要。这项研究发现,负责抵抗棕色锈病的基因只存在于基因组的一个位置,而棕色锈病是一种真菌病原体,曾给甘蔗作物造成数百万美元的损失。这张图片显示的是基因排序图(使用 GENESPACE 创建),它比较了相关植物物种的基因组组装情况。水平白线代表染色体,连接染色体的彩色编织线表示保守的基因块。这样,研究人员就能将研究得比较透彻的作物(如双色高粱,一种特殊的高粱)中的保守基因追踪到更复杂的基因组中,如野生甘蔗和栽培品种 R570,从而更好地了解它们的功能。为了形成对比,上一行提供了 R570 先前的单倍体组合,其中基因组中的多个染色体拷贝被表示为一个单一的马赛克组合。图片来源:Adam Healey 和 John Lovell/HudsonAlpha论文第一作者、HudsonAlpha 公司研究员亚当-希利(Adam Healey)说:"当我们对基因组进行测序时,我们填补了围绕褐锈病的基因序列空白。甘蔗基因组中有数十万个基因,但只有两个基因共同发挥作用,保护植物免受病原体的侵害。据我们所知,在所有植物中,以类似方式进行保护的情况屈指可数。更好地了解甘蔗的这种抗病性是如何起作用的,有助于保护其他面临类似病原体的作物。"研究人员对一种名为 R570 的甘蔗栽培品种进行了研究,几十年来,该品种一直被世界各地用作了解甘蔗遗传学的模型。与所有现代甘蔗栽培品种一样,R570 也是由甘蔗驯化品种(产糖能力强)和野生品种(携带抗病基因)杂交而成的。对农业和生物能源的潜在影响该论文的最后一位作者、法国国际发展农业研究中心(CIRAD)甘蔗研究员安热莉克-德洪(Angélique D'Hont)说:"了解 R570 的完整遗传图谱将使研究人员能够追踪哪些基因来自哪个亲本,从而使育种人员能够更容易地确定控制相关性状的基因,以提高产量。"改良未来的甘蔗品种在农业和生物能源领域都有潜在的应用前景。改进甘蔗的产糖方式可以提高农民的作物产量,在相同的种植面积上提供更多的糖分。甘蔗是生产生物燃料(尤其是乙醇)和其他生物产品的重要原料或起始材料。甘蔗压榨后剩下的残渣被称为甘蔗渣,是一种重要的农业残渣,也可被分解和转化为生物燃料和生物产品。联合生物能源研究所是伯克利实验室领导的能源部生物能源研究中心,该研究所的首席科技官布雷克-西蒙斯(Blake Simmons)说:"我们正在努力了解植物中的特定基因与下游生物质质量的关系,然后我们可以将生物质转化为生物燃料和生物产品。""有了对甘蔗遗传学的深入了解,我们就能更好地理解和控制植物基因型,从而生产出我们所需的糖类和蔗渣衍生中间体,实现与生物经济相关的规模化可持续甘蔗转化技术"。到目前为止,甘蔗复杂的遗传学使其成为最后一种没有完整和高精度基因组的主要作物。研究人员结合多种技术,成功绘制出甘蔗的DNA图谱,并确定了关键区域包括与糖的生产和运输以及对褐锈病的抗病性有关的几个区域。甘蔗的参考基因组可用于帮助培育抗逆性更强的作物或提高糖产量,并可应用于农业和生物能源领域。 ... PC版: 手机版:

封面图片

科学家利用CRISPR改变甘蔗叶片角度 使其变成超级作物

科学家利用CRISPR改变甘蔗叶片角度 使其变成超级作物 甘蔗是全球生物质产量最高的作物,占全球糖产量的 80% 和生物燃料产量的 40%。其巨大的体积和对水和光的最佳利用,使其成为生产创新型可再生生物产品和生物燃料的理想来源。然而,甘蔗作为Saccharum officinarum和Saccharum spontaneum 的杂交种,其基因组是所有作物中最复杂的。这种复杂性意味着通过传统育种方法改良甘蔗具有挑战性。正因为如此,研究人员转而使用基因编辑工具,如 CRISPR/Cas9 系统,来精确地针对甘蔗基因组进行改良。埃莉诺-布兰特(Eleanor Brant)收集叶片样本,用于基因编辑甘蔗的分子分析。图片来源:Charles Keato佛罗里达大学先进生物能源和生物产品创新中心(CABBI)的一个研究小组在《植物生物技术期刊》上发表的新论文中,利用这种遗传复杂性的优势,使用 CRISPR/Cas9 系统对甘蔗的叶片角度进行了微调。这些基因调整使甘蔗能够捕捉到更多的阳光,从而增加了生物质的产量。这项工作支持能源部资助的 CABBI 生物能源研究中心的"植物即工厂"方法及其原料生产研究的主要目标直接在甘蔗等植物的茎中合成生物燃料、生物产品和高价值分子。甘蔗基因组的复杂性部分归因于其高度冗余性:它的每个基因都有多个拷贝。因此,甘蔗植株表现出的表型通常取决于某个基因多个拷贝的累积表达。CRISPR/Cas9 系统非常适合完成这项任务,因为它可以一次性编辑一个基因的几个或多个拷贝。Baskaran Kannan 在田间评估基因编辑甘蔗。图片来源:Uzair Khan这项研究的重点是LIGULELESS1(即LG1),该基因在决定甘蔗叶片角度方面发挥着重要作用。叶片角度反过来又决定了植物能捕获多少光,而这对生物量的生产至关重要。由于甘蔗的高度冗余基因组包含 40 个LG1 基因拷贝,研究人员能够通过编辑不同数量的LG1基因拷贝对叶片角度进行微调,从而根据编辑LG1基因拷贝的数量产生略微不同的叶片角度。"在一些经过LG1编辑的甘蔗中,我们只是突变了几个拷贝,"研究小组负责人、佛罗里达大学农学教授 Fredy Altpeter 说。"通过这样做,我们能够调整叶片结构,直到找到能提高生物量产量的最佳角度"。实地试验结果及对未来的影响当研究人员在田间试验中种植甘蔗时,他们发现直立的叶片表型可以让更多的光线穿透冠层,从而提高了生物量产量。其中一个甘蔗品系的LG1拷贝数约为12%,叶片倾斜角度减少了56%,干生物量产量却增加了18%。通过优化甘蔗以捕捉更多光照,这些基因编辑可以提高生物量产量,而无需在田间添加更多肥料。除此之外,加深对复杂遗传学和基因组编辑的理解,有助于研究人员改进作物改良方法。Altpeter说:"这是第一篇描述CRISPR编辑甘蔗田间试验的同行评审出版物。这项工作也为编辑多倍体作物基因组提供了独特的机会,研究人员可以对特定性状进行微调。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

1600亿碱基对 拥有最大基因组的生物所携带的DNA数量是人类的50倍

1600亿碱基对 拥有最大基因组的生物所携带的DNA数量是人类的50倍 每个活细胞中都蕴藏着构建该生物体的全部蓝图。因此,DNA 是一种密度极高的数据存储介质,一克 DNA 就能存储2.15 亿 GB 的数据。现在,拥有已知最大基因组的生命形式已经被确认它并不是你想象的那样。一种名为"Tmesipteris oblanceolata"的不起眼的蕨类植物被发现拥有由 1,604.5 亿个碱基对(Gbp)组成的基因组。作为参考,人类基因组有 3.1 Gbp。另一种可视化的方法是想象 DNA 链解开的样子。我们的基因组会延伸出 2 米(6.6 英尺),和勒布朗-詹姆斯差不多高。但是,T. oblanceolata的基因组将远远超过 100 米(328 英尺)比自由女神像或大本钟塔还要高。不起眼的叉蕨(Tmesipteris oblanceolata)看起来并不起眼,但它在吉尼斯世界纪录大全中却一骑绝尘 波尔-费尔南德斯因此,这种不起眼的蕨类植物夺得了三项吉尼斯世界纪录头衔:最大的基因组、最大的植物基因组和最大的蕨类植物基因组。它从另一种植物巴黎蕨(Paris japonica)手中夺走了桂冠。这才是真正的"TARDIS"(塔迪斯)风格,光看外表,你根本不知道这株蕨类植物的内部有多大。无论从哪个角度看,它都是一种非常不起眼的植物,长达 30 厘米(12 英寸),看起来就像你在森林里散步时看都不会看一眼的东西。但此前曾发现该家族的其他成员也含有大型基因组,因此伦敦皇家植物园、邱园和西班牙巴塞罗那植物研究所(IBB-CSIC)的科学家们开始对忘忧草进行研究。他们来到西南太平洋的新喀里多尼亚岛,采集这种植物的样本。研究小组通过分离成千上万个细胞的细胞核,用一种能与细胞核中 DNA 结合的染料对其进行染色,从而对基因组进行了分析。通过测量有多少染料与细胞核中的 DNA 结合,可以估算出基因组的大小,从而揭示了新的世界纪录。该研究小组说,耐人寻味的是,基因组并不一定越大越好。基因组大的植物往往生长缓慢,需要更多养分,光合作用效率较低。因此,人们认为T. oblanceolata已经达到了基因组大小的上限。这项研究发表在《iScience》杂志上。 ... PC版: 手机版:

封面图片

科学家完成阿拉比卡基因组测序 为开发适应气候的咖啡打开大门

科学家完成阿拉比卡基因组测序 为开发适应气候的咖啡打开大门 参考基因组对于开发更能适应气候变化和抗病的品种至关重要。通过对阿拉比卡咖啡的参考基因组进行前所未有的测序,一个科学家联盟得以筛选出可能对咖啡抵抗锈病和其他疾病负有责任的基因(候选基因)。同时,他们还确定了与阿拉比卡咖啡香味有关的一些基因的表达。这项研究可为开发更适应气候变化的品种提供指导。图片来源:Gian Barros"有了基因组知识,我们就有可能获得以下两个方向的信息:通过指导杂交来培育品种,换句话说,为我们今后培育新品种的杂交提供参考;"Douglas Domingues 是巴西圣保罗大学路易斯-德凯罗斯农学院植物基因组学和转录组学小组的研究员,也是这篇论文(他当时还在圣保罗州立大学里奥克拉罗分校工作)的作者之一。据他说,对基因组进行测序是一场竞赛。"测序的价格下降了很多,而咖啡是少数几种还没有进行参考基因组测序的商品之一。其他小组也在尝试,在我们之前就有一篇论文发表了。但他们大多采用的是标准策略:选择一种有趣的植物进行栽培,然后对其基因组进行测序。"Domingues 所在的小组对一种植物进行了测序,这种植物从农艺学的角度来看并不有趣,但从遗传学的角度来看却大有可为。"我们参考基因组的优势在于它来自'二倍体'个体。这项工作的协调人、雀巢食品安全与分析科学研究所基因组学高级专家 Patrick Descombes 解释说。他解释说,阿拉比卡咖啡是一种四倍体:它有两个基因组,因为它是由另外两个物种融合而成的。"与常见的四倍体品种相比,通过对阿拉比卡咖啡的二倍体进行测序,科学家们可以获得更清晰、更简化的基因组视图。这样就能更精确地识别相似基因之间的变异,促进分子信息在改良研究中的应用。在这项研究中,研究小组能够更准确地确定这种融合发生的时间:不超过60万年前,C. canephora和C. eugenioides融合形成这种四倍体杂交种,并继续其进化之路。"我们利用阿拉比卡、罗布斯塔和尤金尼欧亚种的DNA信息得出了这一结论:我们能够做出更准确的推断,因为以前这一区间的年代在5万年到100万年之间。"Domingues报告说:"我们将这一时间窗口缩短为 35 万年至 60 万年。"这篇文章最近发表在《自然-遗传学》(Nature Genetics)杂志上,是包括巴西在内的十多个国家的科学家联合攻关的成果,这些科学家与一个以上的机构合作。就多明戈斯而言,他的参与得到了巴西国家科学基金会(FAPESP)的部分资助,该基金会通过青年研究员项目和博士后奖学金授予了苏珊娜-蒂米-伊万本-铃木(Suzana Tiemi Ivamoto-Suzuki),苏珊娜-蒂米-伊万本-铃木也是文章的作者之一。野生与栽培咖啡的基因多样性"我们利用参考序列来了解非洲原产地野生阿拉比卡咖啡的多样性,并将其与当今种植的阿拉比卡咖啡进行比较,"ESALQ-USP 的科学家解释说,研究小组对种植在世界各地的阿拉比卡咖啡品种以及在埃塞俄比亚森林中采集的野生标本进行了重新测序,并设法了解了野生咖啡与种植咖啡之间的差异。为了从基因组学的角度了解阿拉比卡的进化史,该研究小组对 46 个样本进行了测序,其中包括 3 个罗布斯塔样本、2 个尤金尼欧样本和 41 个阿拉比卡样本。后者包括一个 18 世纪的模式标本(分类群作者在描述该分类群时指定的实物标本,作为该分类群的基础材料)、12 个具有不同育种历史的栽培品种、帝汶杂交种(阿拉比卡与抗虫害的C. canephora品种自发杂交)及其与阿拉比卡的 5 次回交,以及从埃塞俄比亚大裂谷东西两侧采集的 17 个野生样本和 3 个野生/栽培样本。"我们使用了最新的基因组技术,即来自高保真 PacBio 系统(用于基因测序)的长读数和来自 Illumina 的短读数(用于分析遗传变异和生物功能的集成系统)的近距离连接,来生成染色体组装。这种组合产生了最高质量和完整性的染色体级组装,"Descombes 说。寻求抗病能力据 ESALQ-USP 教授介绍,在栽培品种中,对育种非常重要的是引入抗咖啡叶锈病的基因。20 世纪 30 年代,巴西在这方面发挥了重要作用。IAC(坎皮纳斯农艺研究所,也位于圣保罗州)是研究和育种的先驱中心。坎皮纳斯农艺研究所的研究人员向我们提供了该机构早在 20 世纪 30 年代就开始实施育种计划的植物。以病害为导向的育种工作出现在 20 世纪 60 至 70 年代,主要工作是将一种抗锈病的阿拉比卡植物(即所谓的帝汶杂交种)与生长在不同国家的植物进行杂交,从而培育出抗锈病的新品种。但当时还不知道是哪些基因产生了抗性。帝汶杂交种于 20 世纪 20 年代在帝汶岛的田间被发现,具有天然抗锈病和其他病害的能力。除锈病外,咖啡浆果病、咖啡浆果螟和咖啡二化螟是影响世界许多地区生产的另外三种主要害虫。气候变化也是控制病虫害的一个关键问题,因为气候变化会使病虫害蔓延到新的地区。雀巢农业科学研究所植物遗传学和化学组经理莫德-勒佩利(Maud Lepelley)透露说:"不同地区之间的生咖啡豆贸易也是导致某些病虫害向新地区传播的另一个因素。"在现已发表的论文中,研究小组设法找到了文献中已经与抗病性相关的基因集,这些基因只存在于改良后的品种中。"帝汶杂交种以某种方式获得了这些抗病基因,现在我们知道是哪些基因了。它们有几十种,但我们已经缩小了搜索范围。阿拉比卡咖啡有 69000 个基因,而我们已经缩小到了不到 30 个。"多明戈斯指出:"能够确定这些以前未知的候选抗性基因,是我们研究中前所未有的成就。"但这项工作远未结束,因为这些基因还有待测试。还需要进行更多的研究,以确定并培育出能够抵抗这些病虫害和其他咖啡病虫害的品种。利用分子遗传学,该研究小组还能够进行三重分离,表明埃塞俄比亚野生植物的遗传多样性不同于今天种植的咖啡,这可能是由于瓶颈效应和驯化造成的,因为在驯化过程中很少有植物被选中。科学家指出:"我们在此表明,由于驯化前的多重瓶颈效应,野生标本的遗传多样性已经很低,而被人类选择用于种植的基因型,包括古老的埃塞俄比亚本地品种和较新的品种,已经在一定程度上混合了不同的品系。"基因表达与咖啡香气与此同时,多明戈斯小组还观察到了一些与咖啡品质,尤其是香味有关的基因表达事件。他们研究了萜烯合成酶(在植物中与抵御昆虫有关),以及一个与咖啡中脂质化合物有关的基因,该基因编码脂肪酸去饱和酶。"我们在一个亚洲阿拉比卡品种中观察到,与香气和风味相关的基因在果实中由C. eugenioides亚基因组表达的多于另一个亲本。换句话说,其中一个基因组对饮料感官特性的贡献大于另一个基因组。"Domingues 说:"我们现在想知道的是:这是否适用于我们测序的所有品种,包括改良前和改良后的品种?"探索阿拉比卡咖啡中的基因相互作用这项研究揭示了C. canephora和C. eugenoides基因之间的相互作用如何与阿拉比卡咖啡的香味等特征相关联。阐明基因之间的相互作用有助于增进我们对阿拉比卡咖啡重要特征的遗传机制的了解,而这是开发新品种的基本前提,可以保证未来咖啡产品所需的咖啡豆的生产。这项工作的衍生项目已经在进行中。"我刚刚与法国研究人员合作启动了另一个项目,这也是第一项工作的衍生项目。我们现在要分析非栽培咖啡物种。我们希望了解非咖啡物种的基因组,这些物种所包含的特征与气候变化情景相关。我们的重点是对气候适应能力较强的物种进行测序。我们想知道它们有哪些基... PC版: 手机版:

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因 2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止 DNA 损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了 145 个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和 DNA 损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过 CRISPR 筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质 SIRT1 得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(Gabriel Balmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对 SIRT1 的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(David Adams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的 145 个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及 DNA 复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当 SIRT1 蛋白被抑制时,DNA 损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为 SMC3 的蛋白质的化学水平实现的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

“基因程序”让所有植物的祖先征服了旱地

“基因程序”让所有植物的祖先征服了旱地 哥廷根大学培养的两株 Zygnema。C 表示叶绿体,N 表示细胞核,P 表示类核。单细胞丝含有两个叶绿体和一个细胞核。现在,在内布拉斯加-林肯大学的领导下,一个由来自全球 20 个研究机构的 50 名科学家组成的团队绘制了四株古老的Zygnema藻类的基因组图谱,揭开了最早陆地植物的基因创新之路。内布拉斯加大学林肯分校的计算生物学家、该研究的共同通讯作者尹彦斌说:"这是一个进化的故事。它回答了最早的陆生植物是如何从水生淡水藻类进化而来这一根本问题。"基因组测序是确定生物体完整遗传物质(DNA)的过程,并将其组装成一个可计算的表示形式。它为研究物种进化和了解遗传多样性提供了宝贵的资源。如果全基因组测序是在基因所在的染色体水平上进行的,则会更有用。绘制海藻基因组图谱揭示了陆生植物的进化过程 Klára Plíhalová/Wikimedia CommonsCC BY-SA 4.0研究人员利用德克萨斯大学奥斯汀分校的藻类培养库中的两个样株和德国哥廷根大学的两个样株,组建了四个多细胞藻类样株。Zygnema属于淡水和半陆生藻类Zygnematophyceae(双星藻属),有4000多个已描述的物种,能适应紫外线、极端干燥和冰冻等极端压力。陆生植物的一个显著特点是它们的多细胞体。多细胞基因与对环境压力的反应密切相关,为植物的适应性奠定了基础。研究人员利用尖端的DNA测序技术,生成了完整的染色体级藻类基因组。通过将这些基因组与其他植物和藻类的基因组进行比较,研究人员发现了双星藻属的基因创新。他们发现了涉及生长和发育、细胞分裂、细胞壁生物合成和重塑的"基因程序",以及由环境线索触发的基因。基因的共同表达表明,它们共同感知环境并相应地调节植物生长。"我们的基因网络分析揭示了基因的共同表达,特别是那些在陆生植物和裸子植物最后的共同祖先中扩展和获得的细胞壁合成和重塑基因,"Yin说。"我们揭示了平衡环境响应和多细胞细胞生长机制的深层进化根源"。研究人员说,他们的发现将引发进一步的研究,这对生物能源、水的可持续性和碳封存都有重要意义。哥廷根大学的共同通讯作者扬-德-弗里斯(Jan de Vries)说:"我们不仅为整个植物科学界提供了宝贵的高质量资源,使他们现在可以探索这些基因组数据,而且我们的分析还发现了环境反应之间错综复杂的联系。"这项研究发表在《自然遗传学》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人