国产首台套 10 兆瓦大功率吊舱推进器实现 100% 化

国产首台套 10 兆瓦大功率吊舱推进器实现 100% 国产化 由中国船舶集团旗下七〇四所自主研发设计制造的国产首台套 10 兆瓦 T 型吊舱推进器,日前在上海进行了全负荷动态试验并圆满成功。该吊舱推进器实现了 100% 国产化,标志着我国在大功率吊舱推进技术领域取得了具有里程碑意义的创新成果。

相关推荐

封面图片

“四川造” 15 兆瓦重型燃气轮机下线 为自主研制、国内首台

“四川造” 15 兆瓦重型燃气轮机下线 为自主研制、国内首台 国内首台自主研制 15 兆瓦重型燃气轮机(代号:G15)在东方电气集团东方汽轮机有限公司(以下简称 “东方汽轮机”)近日正式下线,为我国加快形成自主燃机谱系和优化能源结构提供了支撑。 据了解,G15 机组功率为 16.5 兆瓦,相较于同功率的火力发电机组,一年可减少碳排放超过 15 万吨,联合循环一小时发电量超过 2.2 万千瓦时,可满足 2500 个家庭 1 天的用电需求。下一步,东方汽轮机将持续推进自主燃机系列化研制工作,同步开展 80 兆瓦重型燃气轮机、掺氢燃气轮机、纯氢燃气轮机等自主燃机的研制,加快形成燃机谱系。

封面图片

新突破!我国首台自主研制 15 兆瓦重型燃气轮机下线

新突破!我国首台自主研制 15 兆瓦重型燃气轮机下线 今天(7 月 4 日),我国首台自主研制 15 兆瓦重型燃气轮机 “G15” 在四川德阳总装下线,为我国加快形成自主燃机谱系和优化能源结构提供了支撑。燃气轮机被誉为装备制造业 “皇冠上的明珠”,广泛用于能源、航空航天、工业制造、海洋工程等领域,具有高功率密度、高效率及低排放的特性。这台自主研制的 15 兆瓦重型燃气轮机热效率达 35%。相较于同功率的火力发电机组,一年可减少碳排放超过 15 万吨,联合循环一小时的发电量超过 2.2 万千瓦时,可以满足 2500 个家庭 1 天的用电需求。(央视新闻)

封面图片

功率等级刷新 全球首台18兆瓦海上风电机组吊装成功

功率等级刷新 全球首台18兆瓦海上风电机组吊装成功 这款风电机组,以其126米长的叶片和高达146米的轮毂中心,展现了其巨大的规模和强大的能力。这样的高度相当于50层居民楼的高度,更令人赞叹的是,它还能够抵御每秒84米的超强台风,证明了其卓越的稳定性和抗风能力。其发电能力更是令人瞩目。单台机组每年平均发电量高达7200万千瓦时,这足以满足约3.6万户家庭一年的用电需求。更重要的是,这一过程中,它每年能节约标煤2.2万吨,减少二氧化碳排放5.9万吨,对于推动能源结构转型、减少温室气体排放、保护海洋生态环境具有不可估量的意义。值得一提的是,广东电网公司倾力打造的海上风电大容量机组“认证检测公共试验平台”,作为国内首个临海的陆上风电试验基地,为大容量海上风电新机型的认证检测及试验研究提供了坚实的支持。这一平台的建立,不仅解决了大容量风电机组缺乏整机及涉网检测试验场地的世界性行业性难题,更为我国乃至全球的海上风电发展提供了强有力的技术支撑。 ... PC版: 手机版:

封面图片

考虑到现在手机快充峰值功率已经接近一颗 Intel Core i5-12400 的 PL2 了,我强烈建议各家厂商在生产大功率充

考虑到现在手机快充峰值功率已经接近一颗 Intel Core i5-12400 的 PL2 了,我强烈建议各家厂商在生产大功率充电器的时候,也可以顺带做一下配套的散热器,只要装上去就能长时间跑满峰值功率的那种(

封面图片

NASA开发出改变太空探索游戏规则的H71M亚千瓦霍尔效应推进器

NASA开发出改变太空探索游戏规则的H71M亚千瓦霍尔效应推进器 美国航天局的新推进技术增强了小型航天器执行未来行星任务的能力,并延长了现有卫星的运行寿命。通过与商业实体合作,NASA 不仅推进了其技术商业化目标,还支持了美国航天工业的全球领导地位。资料来源:诺斯罗普-格鲁曼公司使用小型航天器的行星科学任务将需要执行具有挑战性的推进机动任务,例如实现行星逃逸速度、轨道捕获等,这些任务所需的速度变化(delta-v)能力远远超过典型的商业需求和当前的先进水平。因此,这些小型航天器任务的第一项使能技术是能够执行这些高 delta-v 机动任务的电力推进系统。该推进系统必须使用低功率(千瓦以下)运行,并具有高推进剂吞吐量(即在其寿命期内使用高总质量推进剂的能力),以获得执行这些机动动作所需的冲力。经过多年的研究和开发,美国国家航空航天局格伦研究中心(GRC)的研究人员创造了一种满足这些需求的小型航天器电力推进系统NASA-H71M 亚千瓦霍尔效应推进器。此外,这种新型推进器的成功商业化将很快提供至少一种这样的解决方案,以实现下一代小型航天器科学任务所需的高达 8 千米/秒的 delta-v。这一技术创举是通过将过去十年中开发的许多先进的大功率太阳能电力推进技术微型化而实现的,这些技术的应用领域包括人类首个环绕月球的空间站"Gateway"的动力和推进元件。左图:格伦研究中心真空设施 8 推力架上的 NASA-H71M 霍尔效应推进器。右图乔纳森-麦基(Jonathan Mackey)博士在关闭测试设施并抽空之前对推力架进行调试。资料来源:美国国家航空航天局使用 NASA-H71M 电动推进技术的小型航天器将能够独立地从低地球轨道(LEO)机动到月球,甚至从地球同步转移轨道(GTO)机动到火星。这种能力尤为突出,因为向低地轨道和地球同步转移轨道的商业发射机会已成为常规,而这些飞行任务的多余发射能力往往被低价出售,用于部署二级航天器。从这些近地轨道出发执行飞行任务的能力可以大大提高月球和火星科学飞行任务的频率并降低其成本。这种推进能力还将扩大二级航天器的覆盖范围,因为二级航天器历来仅限于与主飞行任务发射轨迹一致的科学目标。这项新技术将使次级飞行任务能够大幅偏离主飞行任务的轨道,从而有助于探索更广泛的科学目标。此外,这些次级航天器科学飞行任务在高速飞越遥远天体时通常只有很短的时间来收集数据。更大的推进能力将允许减速并进入行星轨道进行长期科学研究。此外,配备了这种强大推进能力的小型航天器将能更好地管理主要飞行任务发射轨迹的后期变化。对于机载推进能力有限的小型航天器科学飞行任务来说,这种变化往往是最大的风险,因为它们要依靠最初的发射轨道才能到达科学目标。目前在低地球轨道上形成的小型航天器巨型恒星群已使低功率霍尔效应推进器成为当今太空中使用最广泛的电力推进系统。这些系统对推进剂的使用效率非常高,可用于轨道插入、离轨以及多年的避免碰撞和重新定相。然而,由于这些商业电力推进系统的设计注重成本,不可避免地限制了它们的使用寿命,通常只能运行不到几千小时,而且这些系统只能处理小型航天器初始质量的 10%或更少推进剂。相比之下,受益于NASA-H71M电力推进系统技术的行星科学任务可以运行15000个小时,处理的推进剂占小型航天器初始质量的30%以上。这种改变游戏规则的能力远远超出了大多数商业低地轨道飞行任务的需要,其成本溢价使得此类应用的商业化不太可能。因此,美国航天局寻求并继续寻求与开发创新型商业小型航天器飞行任务概念的公司建立伙伴关系,这些概念对推进剂吞吐量的要求异常高。诺斯罗普-格鲁曼公司的 NGHT-1X 工程模型霍尔效应推进器在格伦研究中心 8 号真空设施中运行。NGHT-1X 的设计基于 NASA-H71M 霍尔效应推进器。资料来源:诺斯罗普-格鲁曼公司诺斯罗普-格鲁曼公司(Northrop Grumman)的全资子公司太空物流公司(SpaceLogistics)是即将在商业小型航天器应用中使用美国国家航空航天局许可的电力推进技术的合作伙伴之一。任务扩展舱(MEP)卫星服务飞行器配备了一对诺斯罗普-格鲁曼公司的 NGHT-1X 霍尔效应推进器,其设计以 NASA-H71M 为基础。该小型航天器的推进能力将使其能够到达地球同步轨道(GEO),并安装在一颗大得多的卫星上。一旦安装完毕,MEP 将充当"推进喷气包",将其主航天器的寿命延长至少六年。诺斯罗普-格鲁曼公司目前正在 GRC 的 11 号真空设施中对 NGHT-1X 进行长时间磨损试验 (LDWT),以展示其全寿命运行能力。LDWT 由诺斯罗普-格鲁曼公司通过一项可全额报销的《空间法协议》提供资金。首批 MEP 航天器预计将于 2025 年发射,它们将延长三颗地球同步轨道通信卫星的寿命。与美国工业界合作,寻找具有与美国航天局未来行星科学任务类似的推进要求的小型航天器应用,不仅支持美国工业界保持商业航天系统的全球领先地位,而且为美国航天局创造了新的商业机会,以便在行星任务需要时获得这些重要技术。美国航天局继续使 H71M 电力推进技术成熟化,以扩大美国工业界可利用的数据和文件的范围,从而开发类似的先进和高能力的低功率电力推进装置。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA的Psyche航天器的霍尔效应推进器正散发着蓝色光芒全速前往小行星带

NASA的Psyche航天器的霍尔效应推进器正散发着蓝色光芒全速前往小行星带 这幅艺术家的概念图描绘了美国国家航空航天局(NASA)的"Psyche"号航天器驶向火星和木星之间主小行星带中富含金属的小行星"Psyche"。飞船于2023年10月发射,将于2029年抵达目的地。资料来源:NASA/JPL-Caltech/ASU美国国家航空航天局(NASA)的"Psyche"号航天器通过了六个月的健康检查,随着轨道飞行器向更深的太空飞去,散发着蓝色光芒的未来派电动推进器尤为引人瞩目。2023年10月13日,这艘飞船搭载着SpaceX公司的猎鹰重型火箭,从美国宇航局位于佛罗里达州的肯尼迪航天中心发射升空。离开大气层后,"Psyche"号充分利用了火箭的助推力,向火星轨道之外飞去。在接下来的一年里,航天器将处于任务规划人员所说的"全速巡航"模式,此时它的电动推进器将接管工作,推动轨道器飞往小行星带。推进器的工作原理是排出带电的氙原子(或离子),发出耀眼的蓝色光芒,在航天器后面拖曳。它们是 Psyche 号效率极高的太阳能电力推进系统的一部分,该系统由太阳光提供动力。电离氙气产生的推力虽然很微弱,但却能完成任务。即使在全速巡航模式下,推进器施加的压力也和你手握四分之三硬币的感觉差不多。美国国家航空航天局的喷气推进实验室正在对一个电动霍尔推进器进行测试,该推进器与将用于推进美国国家航空航天局的"Psyche"号航天器的推进器完全相同。蓝色光芒是由氙推进剂产生的,氙是一种中性气体,用于汽车前大灯和等离子电视。图片来源:NASA/JPL-Caltech令人印象深刻的速度和目的地轨道飞行器现在距离地球超过1.9亿英里(3亿公里),以每秒23英里(37公里)的速度移动。这大约是每小时 84000 英里(135000 公里)。随着时间的推移,在没有大气阻力减速的情况下,Psyche 将加速到 124000 英里/小时(200000 公里/小时)。该航天器将于 2029 年抵达富含金属的小行星 Psyche,并在轨道上进行约两年的观测。它收集到的数据将帮助科学家更好地了解包括地球在内的具有金属内核的岩石行星的形成过程。科学家有证据表明,这颗最宽处约 173 英里(280 公里)的小行星可能是行星小体的部分核心,即早期行星的组成部分。系统检查和科学仪器飞行小组利用"Psyche"号进入太空的头 100 天对所有航天器系统进行了全面检查。所有的工程系统都在按照预期运行,三台科学仪器也一直在顺利运行。磁强计运行良好,能够探测到来自太阳的带电粒子爆发,伽马射线和中子光谱仪也是如此。今年 12 月,成像仪器上的双摄像头拍摄到了第一批图像。美国国家航空航天局南加州喷气推进实验室的"Psyche"项目经理亨利-斯通(Henry Stone)说:"在此之前,我们一直在启动和检查完成任务所需的各种设备,我们可以报告说,它们工作得非常好。现在我们已经上路,期待着即将到来的近距离飞越火星"。这幅图描述了美国国家航空航天局的"Psyche"号航天器在前往小行星"Psyche"的过程中所遵循的路径。图中标注了主要任务的关键里程碑,包括 2026 年 5 月的火星重力辅助。图片来源:NASA/JPL-Caltech令人兴奋的未来邂逅这是因为飞船的运行轨迹将使它在 2026 年春季返回火星。飞船在驶向火星时将关闭推进器,利用火星引力将自己弹射出去。从那里开始,推进器将恢复到全速巡航模式。下一站:小行星 Psyche。与此同时,航天器上的深空光通信技术演示将继续测试其能力。今年 4 月,该实验以每秒 267 兆比特的速度从超过 1.4 亿英里(2.26 亿公里)外向地球上的下行链路站传输测试数据,比特率与宽带互联网下载速度相当,这已经超出了人们的预期。团队的管理和贡献Psyche任务由亚利桑那州立大学领导。位于帕萨迪纳的加州理工学院下属的JPL 负责飞行任务的总体管理、系统工程、集成和测试以及飞行任务的运行。位于加利福尼亚州帕洛阿尔托的 Maxar Technologies 公司提供了大功率太阳能电力推进航天器底盘。JPL 为 NASA 空间技术任务局的技术示范任务计划和空间运行任务局的空间通信与导航计划管理 DSOC。Psyche是第14次被选中执行美国宇航局发现计划的任务,该计划由位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心管理。位于肯尼迪的美国宇航局发射服务计划负责管理发射服务。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人