项目Qwen2 功能:AI模型

项目Qwen2 项目功能:AI模型 项目简介:通义千问开源了Qwen2,包括 0.5B、1.5B、7B、57B-A14B 和 72B 等多个模型。 训练集涵盖除中英文外的 27 种语言,支持最多 128K 上下文。模型擅长处理代码和数学,其中 72B 使用 Qianwen License。 支持通过 Hugging Face 和 ModelScope 获取模型检查点,并提供了详细的文档和教程,帮助用户快速上手和部署模型。 项目地址:点击直达 频道 群聊 投稿 商务

相关推荐

封面图片

阿里通义千问 Qwen2 大模型发布并同步开源

阿里通义千问 Qwen2 大模型发布并同步开源 阿里通义千问 Qwen2 大模型今日发布,并在 Hugging Face 和ModelScope 上同步开源。据悉,Qwen2 系列涵盖5个尺寸的预训练和指令微调模型,其中包括 Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B 和 Qwen2-72B,上下文长度支持进一步扩展,最高达128K tokens。

封面图片

通义千问70亿参数模型上线魔搭社区,开源免费可商用

通义千问70亿参数模型上线魔搭社区,开源免费可商用 AI模型社区魔搭ModelScope上架两款开源模型和,阿里云确认其为通义千问70亿参数通用模型和对话模型,两款模型均开源、免费、可商用。在多个权威测评中,通义千问7B模型取得了远超国内外同等尺寸模型的效果,成为当下业界最强的中英文7B开源模型。 Qwen-7B是支持中、英等多种语言的基座模型,在超过2万亿token数据集上训练,上下文窗口长度达到8k。Qwen-7B-Chat是基于基座模型的中英文对话模型,已实现与人类认知对齐。开源代码支持对Qwen-7B和Qwen-7B-Chat的量化,支持用户在消费级显卡上部署和运行模型。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

阿里巴巴开源能理解图像的 AI 模型 Qwen-VL

阿里巴巴开源能理解图像的 AI 模型 Qwen-VL 阿里巴巴周五开源了能理解图像和完成更复杂对话的 AI 模型和 Qwen-VL-Chat。阿里巴巴称,Qwen-VL 基于 Qwen-7B,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出,它使用了约 1.5B 的图文数据训练。在四大类多模态任务的标准英文测评中上,Qwen-VL 均取得同等通用模型大小下最好效果;支持英文、中文等多语言对话,端到端支持图片里中英双语的长文本识别;支持多图输入和比较,指定图片问答,多图文学创作等;相比于目前其它开源 LVLM使用的 224 分辨率,Qwen-VL 是首个开源的 448 分辨率的 LVLM 模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。Qwen-VL 和 Qwen-VL-Chat 使用名为 Tongyi Qianwen LICENSE AGREEMENT 的许可证,有限制条件,如果商业使用,则需要从阿里巴巴获得授权。来源 , 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma 7B 两种尺寸, 能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT 设备、移动设备和云端。性能和设计 Gemma 模型在技术和基础设施组件上与 Gemini 共享,这使得 Gemma 2B 和 7B 在其大小范围内相比其他开放模型具有最佳性能。 Gemma 模型不仅可以直接在开发者的笔记本电脑或桌面电脑上运行,而且在关键基准测试中的表现超过了更大的模型,同时遵循严格的安全和负责任输出标准。 主要特点: 1、轻量级、高性能模型:Gemma 模型家族包括 Gemma 2B 和 Gemma 7B.两种尺寸,提供预训练和指令调优的变体,针对其大小范围内相比其他开放模型具有最佳性能。 2、跨框架工具链支持:支持 JAX、PyTorch 和 TensorFlow 通过原生 Keras 3.0.进行推理和监督式微调(SFT),适应多种开发需求和环境。 3、易于入门和集成:提供准备就绪的 Colab 和 Kaggle 笔记本,以及与 Hugging Face、MaxText、NVIDIA NeMo.和 TensorRT-LLM 等流行工具的集成,方便开发者快速上手。 4.高效的运算能力:针对多个 AI 硬件平台上进行优化,确保在 NVIDIA GPU 和 Google Cloud TPU 上的行业领先性能。通过与 NVIDIA 的合作,无论是在数据中心、云端还是本地 RTX AI PC 上,都确保了行业领先的性能和与尖端技术的集成。 Gemma 模型能够在不同的设备类型上运行,这种广泛的兼容性使得模型能够适应各种应用场景和需求。 Hugging Face 测试链接: via 匿名 标签: #Google #Gemma 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

阿里通义千问开源 320 亿参数模型

阿里通义千问开源 320 亿参数模型 4 月 7 日,阿里云通义千问开源 320 亿参数模型 。通义千问此前已开源 5 亿、18 亿、40 亿、70 亿、140 亿和 720 亿参数 6 款大语言模型。 此次开源的 320 亿参数模型,将在性能、效率和内存占用之间实现更理想的平衡。例如,相比通义千问 14B 开源模型,32B 在智能体场景下能力更强;相比通义千问 72B 开源模型,32B 的推理成本更低。通义千问团队希望 32B 开源模型能为企业和开发者提供更高性价比的模型选择。 目前,通义千问共开源了 7 款大语言模型,在海内外开源社区累计下载量突破 300 万。来源, 频道:@kejiqu 群组:@kejiquchat

封面图片

:用 PyTorch 轻松微调大语言模型

:用 PyTorch 轻松微调大语言模型 PyTorch发布了torchtune库的alpha版本,用于轻松微调大型语言模型。该库遵循PyTorch的设计原则,提供了组件化和模块化的构建块,以及易于扩展的微调示例,以在各种消费级和专业GPU上微调流行的大型语言模型。 torchtune支持从头到尾的完整微调工作流程,包括数据集和模型检查点的下载和准备、可组合的构建块进行训练自定义、训练过程的日志和指标记录、模型量化、在知名基准上的模型评估以及本地推理。 torchtune致力于易扩展性、让微调大众化、与开源生态系统的互操作性。未来几周将持续为库增加更多模型、特征和微调技术。 torchtune与Hugging Face Hub、PyTorch FSDP、Weights & Biases、EleutherAI的评估工具、ExecuTorch和torchao等开源生态系统的组件深度集成,为用户提供灵活性和控制力。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人