#科普 X 射线成像、PET 扫描、CT 扫描和 MRI 是用于捕获身体内部图像的不同成像技术。

#科普 X 射线成像、PET 扫描、CT 扫描和 MRI 是用于捕获身体内部图像的不同成像技术。 X 射线:主要用于检测骨折、某些肿瘤和其他异常肿块、肺炎、某些类型的损伤、钙化、异物或牙齿问题。 MRA:磁共振血管造影。使用强大的磁场、射频波和计算机来评估血管并帮助识别异常情况。 MRI:磁共振成像。使用磁场和无线电波来拍摄体内图像。 对收集 X 射线检查中未显示的软组织(例如器官和肌肉)的照片特别有帮助。 PET 扫描:正电子发射断层扫描。可用于评估器官和/或组织是否存在疾病或异常状况。PET 还可用于评估器官的功能,例如心脏或大脑。PET 最常见的用途是检测癌症和评估癌症治疗。 CT 扫描:计算机断层扫描。用于识别身体各个区域的疾病或损伤。例如,CT 已成为检测腹部可能存在肿瘤或病变的有效筛查工具。当怀疑患有各种类型的心脏病或异常时,可以要求进行心脏 CT 扫描。

相关推荐

封面图片

@onlychigua 磁共振成像(MRI)是一种医学成像技术。它使用强磁场,磁场梯度和无线电波来生成体内器官的图像。那男女性交

@onlychigua 磁共振成像(MRI)是一种医学成像技术。它使用强磁场,磁场梯度和无线电波来生成体内器官的图像。那男女性交在MRI下是什么样的? 这是一篇1999年的研究论文探究了在男女性爱期间拍摄生殖器的可能性 https://doi.org/10.1136/bmj.319.7225.1596

封面图片

血流成像手表可以随时随地查看体内血液情况

血流成像手表可以随时随地查看体内血液情况  高分辨率光声成像技术已缩小到能装进手表里光声成像的工作原理是这样的。首先,物体吸收光,这里是激光脉冲。被吸收的光能转化为热能,产生温升。然后,热弹性膨胀产生可探测的声波。超声波成像和光声成像的区别在于,前者能识别解剖结构,而后者则能获得分辨率更高的功能和结构图像。由于光声成像可以穿透2-3厘米(0.8-1.2英寸)深的组织,它已被用于扫描血管、估算血液含氧量(血氧饱和度)以及诊断皮肤病和癌症。中国南方科技大学(SUSTech)的研究人员开发出了一种光声成像装置,其体积小到可以装在手表里。"虽然光声成像对血液动力学的变化极为敏感,但成像接口的小型化和优化困难重重,限制了可穿戴光声设备的发展,"概述研究人员新系统的研究报告通讯作者奚磊说。"据我们所知,这是首个适合医疗保健应用的光声可穿戴设备"。光声手表能捕捉皮肤血管的高分辨率图像血液动力学是血液流动的动力学。记录心率、血压和血氧饱和度等血液动力学参数可以衡量心脏的工作状况。研究人员的设备包括一块带有成像界面的手表、一台手持电脑和一个装有激光器和电源的背包(背包重量为 7 千克/15 磅)。它的设计允许佩戴者自由移动。该设备的激光焦点可调整,这意味着它能够对皮肤等多层结构成像,其 8.7 微米的分辨率足以在直径约 3 毫米的最大视野内对皮肤中的大多数微小血管成像。志愿者佩戴光声装置在不同条件下进行测试,如行走时或袖带暂时阻断手臂血流时。测试表明,该系统可用、小巧、稳定,可以自由移动。背包内装有设备的激光供应器和电源,重 15 磅。"像我们开发的这种微型可穿戴成像系统有可能被社区卫生中心用于疾病的初步诊断,或在医院环境中用于血液循环相关参数的长期监测,为各种疾病的治疗提供有价值的见解,"奚磊说。"随着进一步开发,这种系统还可用于早期检测牛皮癣和黑色素瘤等皮肤病,或分析烧伤情况。"研究人员正在努力研制一种激光源更小、脉冲重复率更高的系统,这将使系统更加紧凑、轻便,同时提高安全性和分辨率。最终,这将包括抛弃背包。鉴于现代激光二极管技术和电子信息技术的飞速发展,研制出更先进、更智能、不需要背包的光声手表应该是完全可行的。他们还希望改进设备,使其能够承受更剧烈的体力活动,如跑步和跳跃。此外,他们还希望加入更多血液动力学参数,包括对血管数量和体积的定性评估,这将有助于该系统用于癌症和心血管疾病的早期诊断。这项研究发表在《光学通讯》杂志上。 ... PC版: 手机版:

封面图片

世界上最强大的核磁共振成像仪首次捕捉到令人惊叹的大脑扫描图像

世界上最强大的核磁共振成像仪首次捕捉到令人惊叹的大脑扫描图像 用功率为 11.7 特斯拉的新型 Iseult 核磁共振成像仪拍摄的人脑图像,显示了可能达到的详细程度这种额外功率的主要好处是可以更快地拍摄出分辨率更高的大脑图像。在短短四分钟内,Iseult 就能捕捉到水平方向最小 0.2 毫米(0.008 英寸)的脑组织图像,"切片"厚度仅为 1 毫米(0.04 英寸)。这相当于一次拍摄几千个神经元。传统的核磁共振成像仪要拍摄出这种分辨率的图像,病人需要完全静止地躺上两个多小时,稍有移动就会模糊不清。这当然是不可行的。90 厘米(35.4 英寸)宽的"洞"让病人可以把头伸进去,这也提高了舒适度。与通常的 60 至 70 厘米(23.6 至 27.6 英寸)相比,这似乎不是一个很大的增长,但额外的头部空间有助于减少幽闭恐惧症。使用新型 Iseult 核磁共振成像仪在不同功率级别(3 T、7 T 和 11.7 T)下拍摄的人脑图像对比。几年前,Iseult 曾在南瓜上进行过测试,但现在它对 20 名健康志愿者的大脑进行了首次扫描。这些令人惊叹的图像展示了新型核磁共振成像技术的潜力,它可以揭示以前无法获得的有关大脑如何工作的信息,包括大脑如何编码心理表征,以及哪些神经元特征与意识本身有关。除了这些存在的问题,Iseult 还能帮助科学家了解、诊断和治疗阿尔茨海默氏症和帕金森氏症等神经退行性疾病。它应该能够检测到常规核磁共振扫描通常无法看到的化学特征,包括葡萄糖和谷氨酸等分子,这些分子参与大脑新陈代谢,其紊乱可能与胶质瘤和神经变性等疾病有关。它还能追踪锂在大脑中的分布,锂可用于治疗躁郁症。由于其复杂性,Iseult 比其他核磁共振成像仪大得多。它长、宽各 5 米(16.4 英尺),重 132 吨,由 182 千米(113 英里)长的超导导线组成。为了将磁体冷却到所需的-271.35 °C(-456.43 °F),需要大约 7500 升(1981 加仑)液氦。这种尺寸、复杂性和毫无疑问的成本可能会限制伊瑟尔磁共振成像仪的使用范围,但希望它能带来足够的好处,尽快在一些特殊设施中投入使用。该团队在下面的视频中讨论了这项技术。 ... PC版: 手机版:

封面图片

欧洲核子研究中心(CERN)的粒子加速器技术被用于治疗脑肿瘤

欧洲核子研究中心(CERN)的粒子加速器技术被用于治疗脑肿瘤 Timepix3 最初是为欧洲核子研究中心等巨型加速器的粒子探测而设计的摧毁头颈部肿瘤相对简单。用适当的化学药剂或足够强大的放射线对其进行照射,工作就完成了。问题在于如何在不杀死病人的情况下杀死癌细胞。治疗此类肿瘤的一种有效方法是使用离子束。将带电粒子加速到四分之三光速的离子束可以穿透活体组织达一英尺。为了保护健康细胞,传统技术是以肿瘤为中心,以曲线方式移动离子投射器。这样,肿瘤不断受到轰击,而健康组织只受到轻微照射。为病人准备离子束疗法 欧洲核子研究中心这是一种简单有效的方法,但远非完美,尤其是当肿瘤位于大脑中时。在这种情况下,由于离子束击中组织,邻近的健康细胞很有可能受到二次辐射,从而导致记忆力减退、视神经受损和其他问题。为了尽量减少这种情况,X 射线计算机断层扫描(CT)可以精确绘制肿瘤位置图,指导外科医生制定治疗方案。遗憾的是,手术前进行的扫描可能并不准确,因为手术后大脑在头骨中发生了移动。为了弥补这一缺陷,德国国家肿瘤疾病中心(NCT)、德国癌症研究中心(DKFZ)和海德堡大学医院海德堡离子束治疗中心(HIT)的研究人员使用了捷克公司 ADVACAM 制造的新型成像设备,该设备集成了欧洲核子研究中心开发的 Timepix3 像素探测器。Timepix3 芯片 欧洲核子研究中心Timepix3 设计用于半导体探测器和充气探测器,是一种通用集成电路,可以接收稀疏的探测数据,并在短时间内提供高分辨率输出。这样,ADVACAM 就可以利用离子束的二次辐射,将辐射作为跟踪信标来更新组织图。ADVACAM公司的Lukáš Marek说:"我们的照相机可以记录患者身体发出的每一个带电粒子的二次辐射。这就像观察台球击球时散落的球。如果根据 CT 图像,球的反弹符合预期,我们就可以确定目标正确。否则,'地图'显然不再适用。那么就有必要重新规划治疗"。研究人员的想法是,这些更新将更好地瞄准肿瘤,同时减少患者受到的不必要辐射量,用更高水平的辐射照射肿瘤。目前,探测器需要中断治疗,以便重新规划。不过,该计划的后期阶段将包括实时修正光束路径的功能。"当我们开始为大型强子对撞机开发像素探测器时,我们的目标只有一个探测和成像每一次粒子相互作用,从而帮助物理学家揭开高能量下自然界的秘密,"Medipix 协作组织发言人迈克尔-坎贝尔(Michael Campbell)说。"Timepix探测器是由多学科Medipix合作组织开发的,其目的是将同样的技术应用到新的领域。其中许多领域在一开始是完全无法预见的,这项应用就是一个很好的例子"。 ... PC版: 手机版:

封面图片

超人的X射线视觉超能力现在可以由一台手持设备呈现

超人的X射线视觉超能力现在可以由一台手持设备呈现 研究人员创造了一种微小的芯片,可以透过纸板拍摄物体的图像。这项技术可以装在智能手机里,让我们离超人的 X 光透视能力更近了一步(没有 X 光)。德克萨斯大学电气工程教授、德克萨斯模拟卓越中心(TxACE)主任、该研究的共同作者之一肯尼思-奥(Kenneth O)说:"这项技术就像超人的X射线视觉。当然,我们使用的是 200 千兆赫到 400 千兆赫的信号,而不是可能有害的 X 射线。"该成像仪微芯片技术于 2022 年首次展示,是 O 及其学生、研究人员和合作者团队 15 年多工作的结晶。芯片发射太赫兹(THz)范围的辐射,即频率范围在 0.1 太赫兹(100 千兆赫)到 10 太赫兹之间的电磁辐射,相应波长从 3 毫米到 0.03 毫米不等。这些电波人眼看不见,被认为是安全的,其频率高于无线电波和微波,但低于红外线。通过 2022 年的模型,O 证明了微型芯片产生的 430 GHz 光束可以穿过雾、灰尘和其他光学光无法穿透的障碍物。它们从物体上反弹并反射回微芯片,像素接收信号并生成图像。这种成像器并不依赖于外部透镜,通常使用外部透镜可以提高图像的清晰度和锐利度。相反,它采用了互补金属氧化物半导体(CMOS)技术,这种技术用于制造现代消费计算机处理器、存储芯片和其他数字设备。CMOS已成为生成和检测太赫兹信号的一种经济实惠的方式,尤其是在200千兆赫及更高的频率下,它能提供更好的分辨率。因此,研究人员开始着手改进其 2022 型号的图像质量,并使该技术小巧到足以装入手持设备。新的成像芯片使用了一个由 296 GHz CMOS 像素组成的 1 x 3 阵列,而且同样没有镜头。"我们设计的芯片没有透镜或光学器件,因此可以安装在移动设备中,"该论文的通讯作者、上海交通大学电子与计算机工程系助理教授 Wooyeol Choi 说。"像素通过检测目标物体反射的信号来生成图像,其形状为 0.5 毫米的正方形,大小与沙粒差不多。"经过测试,该技术可以在大约一厘米(0.4 英寸)远的地方对覆盖着硬纸板的物体(一个 USB 加密狗、一个刀片、一个集成电路和一个塑料垫圈)进行成像。出于安全和保护隐私的考虑,研究人员特意让成像仪在离物体如此近的距离进行扫描。从根本上说,这样做是为了打消人们的顾虑,比如小偷可能会利用该设备从远处扫描某人包里的物品。研究人员计划使下一次迭代能够捕捉到五英寸(12.7 厘米)远的图像。德州仪器(TI)基尔比实验室(Kilby Labs)射频/毫米波和高速研究主管布莱恩-金斯伯格(Brian Ginsburg)说:"经过15年的研究,像素性能提高了1亿倍,再加上数字信号处理技术,才使这次成像演示成为可能。这项颠覆性技术展示了真正太赫兹成像的潜在能力。"根据研究人员的设想,他们的智能手机微型芯片成像仪将用于各种用途,从寻找墙壁背后的墙柱和木梁,到识别管道裂缝以及信封和包裹的内容。他们还认为,它还可以应用于医疗领域。德州仪器公司(TI)毫米波和高频微系统基础技术研究计划和三星全球研究拓展计划为这项研究提供了支持。这项研究发表在《IEEE 太赫兹科学与技术论文集》(IEEE Transactions on Terahertz Science and Technology)上。 ... PC版: 手机版:

封面图片

女子称因学历低被判去高危妊娠门诊,这是一种学历歧视吗?学历低是高危因素之一吗?

女子称因学历低被判去高危妊娠门诊,这是一种学历歧视吗?学历低是高危因素之一吗? 阿源老师的回答 啥都讲政治正确反而会害人的 单纯从生物学角度,确实不包含学历:1.孕妇年龄&LT18岁或≥35岁;体重>70kg;身长&LT140cm。 2.有异常孕产史者,如异位妊娠(俗称宫外孕)、流产、早产、死胎、死产、各种难产及手术产、新生儿死亡、新生儿溶血性黄疸、先天缺陷或遗传性疾病。 3.孕期出血,如先兆流产、早产、前置胎盘、胎盘早剥等。 4.妊娠期高血压疾病。 5.妊娠合并内科疾病,如心脏病、糖尿病、肾炎、甲状腺功能异常、病毒性肝炎、重度贫血、病毒感染(巨细胞病毒、疱疹病毒、风疹病毒)等。 6.妊娠期接触有害物质,如放射线、同位素、农药、化学毒物、CO中毒及服用对胎儿有害药物等。 7.母儿血型不合。 8.早产或过期妊娠。 9.胎盘及脐带异常。 10.胎位异常。 11.产道异常(包括骨产道及软产道)。 12.多胎妊娠。 13.羊水过多、过少。 14.多年不育经治疗受孕者。 15.曾患或现有生殖器官肿瘤者等。但是人是社会动物,必须考虑到生活中可能不利于母婴的因素。 一是家境较差,母婴容易营养跟不上,不是说吃不了鱼肉,反而是这种家庭鱼肉容易吃过头;二是学历较低,容易产生理解误差,比如下图所讲的情况,我也遇到过一个类似的情况,我给她讲解注意事项,结果身边的人全听懂了,她还是没听懂。 看下图,这家医院考虑得非常全面了,离医院较远、丈夫不在家,都有可能导致孕妇有突发情况不能被及时送到医院。 可以说初诊进入高危妊娠门诊是没有问题,因为具有这些特点的人在初诊的时候是需要额外的关注的,先得评估她是不是真高危,后续再分配她是不是去普通门诊。 via 知乎热榜 (author: 阿源老师)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人