清华大学教授AMiner创始人唐杰的团队做了一个全新的Agent能力榜单,评估基础模型智能体。

清华大学教授AMiner创始人唐杰的团队做了一个全新的Agent能力榜单,评估基础模型智能体。 这是一个多维演进基准测试,包括8个不同环境,用于评估大型语言模型(LLMs)在多回合开放式生成环境中的推理和决策能力,通过对25个语言模型的广泛测试,发现顶级商业语言模型在复杂环境中表现出色,且与开源模型之间存在显著差距。AgentBench的数据集,环境,和集成评估包已在 github上发布。 8种不同的环境任务,即操作系统(OS)、数据库(DB)、知识图谱(KG)、卡牌对战(DCG)、情景猜谜(LTP)、家居(Alfworld)、网络购物(WebShop)、 和网页浏览(Mind2Web)。 使用 AgentBench 对 25 个不同的语言模型进行了全面评估,揭示了领先的商业语言模型与开源模型之间的显着性能差距。对语言模型作为智能体的更广泛讨论的贡献,表明需要进行严格、系统的评估,并提供强大的开源工具来促进此类评估。 ||

相关推荐

封面图片

开源的基础模型能力评测框架,提供了一套轻量级、易于使用的评测体系,支持主流大模型的性能评估。

开源的基础模型能力评测框架,提供了一套轻量级、易于使用的评测体系,支持主流大模型的性能评估。 其主要特点如下: 轻量易用的评估框架:无缝设计,界面直观,依赖性极小,部署轻松,可扩展性极佳,适应多样化评估场景。 评估方式灵活多样:支持统一提示模板,评估指标丰富,可个性化定制,满足特定需求。 高效、快速的推理部署:支持torch、vLLM等多种模型部署策略,实现多实例部署,实现快速评估流程。 公开透明的开源排行榜:维护开放、可追溯、可复制的评估排行榜,由社区更新驱动,以确保透明度和可信度。 官方权威评测数据:采用广泛认可的官方评测集,确保评测的公平性和标准化,确保结果具有可比性和可重复性。 全面而广泛的模型支持:为广泛的模型提供支持,包括来自 Huggingface 开源存储库的模型和个人训练的模型,确保全面的覆盖范围。 | #框架

封面图片

:开源的视觉-语言(VL)模型,旨在实现真实世界的视觉语言理解。

:开源的视觉-语言(VL)模型,旨在实现真实世界的视觉语言理解。 它具有广泛的多模态理解能力,能够处理逻辑图表、网页、公式识别、科学文献、自然图像和复杂场景中的具体智能等。 DeepSeek-VL提供了多个模型版本,包括不同规模和功能的模型,以满足不同的研究和商业应用需求。

封面图片

【清华大学副教授眭亚楠:大语言模型与具身智能具有强互补性】

【清华大学副教授眭亚楠:大语言模型与具身智能具有强互补性】 10 月 26 日,在 2023REAL 科技大会上,清华大学副教授眭亚楠表示,大语言模型与具身智能是强互补性的,大语言模型已经很大程度解决了感知问题,可以提升具身智能的研究和转化前沿。机器领域的感知来自于视觉,由于视觉的快速提升,使得具身智能和机器人的能力也在快速提升。接下来几年,随着语言能力,机器人的控制、规划能力也在快速提升,大语言模型和多模态能力,更会让具身智能进一步提升。 快讯/广告 联系 @xingkong888885

封面图片

:开源大模型的统一后端接口,支持多种开源大模型

:开源大模型的统一后端接口,支持多种开源大模型 该项目为开源大模型的推理实现统一的接口接口,与OpenAI响应保持一致,具有以下特性: 以OpenAI ChatGPT API这样的方式调用开源分布式大模型 支持流式响应,实现打印机效果 实现文本嵌入模型,为文档知识问答提供支持 支持大规模语言模型开发工具langchain 的广泛功能 要简单的修改环境变量即可将开源模型作为chatgpt的替代模型,为大众应用提供反馈支持 支持加载经过自行训练的lora模型

封面图片

用于评估大型语言模型(LLM) Agent在多步多模态任务中的工具使能力的基准数据集,包含超过 4000 个多步多模态任务,这些

用于评估大型语言模型(LLM) Agent在多步多模态任务中的工具使能力的基准数据集,包含超过 4000 个多步多模态任务,这些任务涉及 33 种工具,包括 13 种多模态模型、9 个公共 API 和 11 个图像处理模块 | #数据集

封面图片

:开源代码语言模型,包含了英语和中文两种语言版本的代码生成模型。

:开源代码语言模型,包含了英语和中文两种语言版本的代码生成模型。 模型经过大规模训练,训练数据中87%为代码数据,13%为自然语言数据。模型大小提供1B、5.7B、6.7B、33B等多个版本,满足不同需求。 模型在人工评估、多语言程序、MBPP、DS-1000等多个编程基准上均表现出色,在项目级代码补全、代码插入等任务有很好的效果。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人