Arcee 的 MergeKit:用于合并大型语言模型的工具包 |

Arcee 的 MergeKit:用于合并大型语言模型的工具包 | 提出MergeKit,一个开源、模块化、可扩展的模型合并库,使研究人员和实践者可以高效地合并预训练语言模型,从而创造出性能更优异、适应范围更广的新模型。

相关推荐

封面图片

是一个对比学习工具包,使研究人员和工程师能够有效地训练和评估对比模型。

是一个对比学习工具包,使研究人员和工程师能够有效地训练和评估对比模型。 特征: 建立在Flash Attention之上,可实现快速高效的训练 支持在多个 GPU 上进行训练 GradCache支持在受限内存环境中进行大批量训练 Huggingface 支持轻松加载常见模型(Pythia/GPTNeoX、BERT 等) 掩码语言建模 (MLM) 预训练

封面图片

: 用于在大型语言模型(LLM)中实现水印的研究和应用的工具包

封面图片

用于评估大型语言模型(LLM) Agent在多步多模态任务中的工具使能力的基准数据集,包含超过 4000 个多步多模态任务,这些

用于评估大型语言模型(LLM) Agent在多步多模态任务中的工具使能力的基准数据集,包含超过 4000 个多步多模态任务,这些任务涉及 33 种工具,包括 13 种多模态模型、9 个公共 API 和 11 个图像处理模块 | #数据集

封面图片

Google的教学视频《》,介绍了大型语言模型(Large Language Models,LLMs)的概念、使用场景、提示调整

Google的教学视频《》,介绍了大型语言模型(Large Language Models,LLMs)的概念、使用场景、提示调整以及Google的Gen AI开发工具。 大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。这些模型经过训练,可以解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题。然后,可以利用相对较小的领域数据集对这些模型进行定制,以解决零售、金融、娱乐等不同领域的特定问题。 大型语言模型的三个主要特征是:大型、通用性和预训练微调。"大型"既指训练数据集的巨大规模,也指参数的数量。"通用性"意味着这些模型足够解决常见问题。"预训练和微调"是指用大型数据集对大型语言模型进行一般性的预训练,然后用较小的数据集对其进行特定目的的微调。 使用大型语言模型的好处包括:一种模型可用于不同的任务;微调大型语言模型需要的领域训练数据较少;随着数据和参数的增加,大型语言模型的性能也在持续增长。 此外,视频还解释了传统编程、神经网络和生成模型的不同,以及预训练模型的LLM开发与传统的ML开发的区别。 在自然语言处理中,提示设计和提示工程是两个密切相关的概念,这两者都涉及创建清晰、简洁、富有信息的提示。视频中还提到了三种类型的大型语言模型:通用语言模型、指令调整模型和对话调整模型。每种模型都需要以不同的方式进行提示。

封面图片

Shufflecake - 是一个用于在磁盘上创建隐藏的加密分区的工具包。

Shufflecake - 是一个用于在磁盘上创建隐藏的加密分区的工具包。 该项目被推销为比 Truecrypt 和 Veracrypt 更好的隐藏敏感数据的解决方案,对 GNU/Linux 平台的原生支持,并且最多可以嵌套15 个卷,相互隐藏。 为了混淆,采用了 "合理推诿 "的行为模型。 网站: #tools

封面图片

:更好的通用预训练语言模型

:更好的通用预训练语言模型 Pile-T5通过在Pile数据集上预训练T5模型,并使用LLAMA分词器,改进了原始T5的编码能力。 Pile-T5总体上明显优于原始T5v1.1模型,尤其在代码任务上的提升更大。这主要得益于Pile中包含代码数据以及LLAMA分词器包含编程常用字符。 在多个下游任务的微调中,Pile-T5不同规模的模型表现优异,如在SuperGLUE、CodeXGLUE、MMLU和BigBench Hard上的结果。 尽管与专门微调的Flan-T5相比略逊色,但Pile-T5仍优于T5v1.1,表明其预训练质量更高,更适合多任务微调。 公开了Pile-T5模型在不同训练步长的中间检查点,这有利于模型演化和解释性研究。 Pile-T5 Large模型在某些任务上的表现不佳,可能存在bug,用户需谨慎使用。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人