( flwr) 是用于构建联邦学习系统的 #框架 。Flower 的设计基于以下几个指导原则:

( flwr) 是用于构建联邦学习系统的 #框架 。Flower 的设计基于以下几个指导原则: 可定制:联邦学习系统因一个用例而异。Flower 允许根据每个单独的用例的需要进行各种不同的配置。 可扩展:Flower 起源于牛津大学的一个研究项目,因此在构建时考虑了 AI 研究。许多组件可以扩展和覆盖以构建新的最先进的系统。 与框架无关:不同的机器学习框架具有不同的优势。Flower 可以与任何机器学习框架一起使用,例如PyTorch、 TensorFlow、Hugging Face Transformers、PyTorch Lightning、MXNet、scikit-learn、JAX、TFLite,甚至 适合喜欢手动计算梯度的用户的原始NumPy 。 可以理解:Flower 的编写考虑了可维护性。鼓励社区阅读和贡献代码库

相关推荐

封面图片

SSLRec是一个基于 PyTorch 的深度学习框架,用于通过自我监督学习技术增强的推荐系统。包含常用的数据集、用于数据处理、

SSLRec是一个基于 PyTorch 的深度学习框架,用于通过自我监督学习技术增强的推荐系统。包含常用的数据集、用于数据处理、训练、测试、评估和最先进的研究模型的代码脚本。 SSLRec提供了大量实用函数和易于使用的界面,简化了推荐模型的开发和评估。 突出特点 灵活的模块化架构。SSLRec 库采用模块化架构,可以轻松定制和组合模块。这使用户能够创建适合其特定需求和要求的个性化推荐模型。 多样化的推荐场景。SSLRec 库是一个多功能工具,适合有兴趣在不同推荐系统研究领域构建有效推荐模型的研究人员和从业者。 综合最先进的模型。我们的 SSLRec 框架为各种场景提供了广泛的 SSL 增强推荐模型。研究人员可以使用先进技术评估这些模型,并将其作为推动推荐系统领域创新的基础。 统一数据馈送和标准评估协议。SSLRec框架具有统一的数据馈送器和标准评估协议,可以轻松加载和预处理来自各种来源和格式的数据,同时确保对推荐模型的客观和公平评估。 丰富的实用功能。SSLRec 库提供了大量实用函数,可以简化推荐模型的开发和评估。这些功能结合了推荐系统的常见功能以及图操作、网络架构和损失函数的自监督学习。 易于使用的界面。我们提供了一个用户友好的界面,可以简化推荐模型的训练和评估。这使得研究人员和从业者能够轻松高效地试验各种模型和配置。 | #框架

封面图片

:基于PyTorch构建的高性能优化器库,可轻松实现函数优化和基于梯度的元学习

:基于PyTorch构建的高性能优化器库,可轻松实现函数优化和基于梯度的元学习 它包括两个主要功能: TorchOpt 提供了功能优化器,可以为 PyTorch 启用类似 JAX 的可组合功能优化器。使用 TorchOpt,可以轻松地在 PyTorch 中使用函数式优化器进行神经网络优化,类似于 JAX 中的Optax。 借助函数式编程的设计,TorchOpt 为基于梯度的元学习研究提供了高效、灵活且易于实现的可微优化器。它在很大程度上减少了实现复杂的元学习算法所需的工作量。

封面图片

LLMFlows 是一个框架,用于构建简单、明确和透明的 LLM(大语言模型)应用程序,如聊天机器人、问答系统和代理。

LLMFlows 是一个框架,用于构建简单、明确和透明的 LLM(大语言模型)应用程序,如聊天机器人、问答系统和代理。 LLMFlows 的核心是提供一套简约的抽象,让你可以利用 LLM 和向量存储,构建结构良好、清晰明了的应用程序,这些应用程序没有隐藏的提示或 LLM 调用。LLM Flows 可确保每个组件完全透明,从而使监控、维护和调试变得简单。 | #框架

封面图片

:完全重写的Keras代码库,基于模块化后端架构进行重构,可以在任意框架上运行Keras工作流,包括TensorFlow、JAX

:完全重写的Keras代码库,基于模块化后端架构进行重构,可以在任意框架上运行Keras工作流,包括TensorFlow、JAX和PyTorch。 新功能包括:完整的Keras API,适用于TensorFlow、JAX和PyTorch;跨框架的深度学习低级语言;与JAX、PyTorch和TensorFlow原生工作流的无缝集成;支持所有后端的跨框架数据流水线;预训练模型等

封面图片

《26天教会你构建绩效增长系统》

《26天教会你构建绩效增长系统》 简介:26天教会你构建绩效增长系统是一门系统性的学习课程,涵盖相关领域的核心知识。通过详尽的讲解和案例分析,帮助学习者深入理解课程主题,提高实践应用能力,适合希望扩展知识储备、提升专业技能的学员。 标签: #知识#学习资源#技能提升 文件大小:NG|链接:

封面图片

用Python和NumPy从头开发的深度学习框架

用Python和NumPy从头开发的深度学习框架 作者语:为了完全理解某件事,你必须从头开始自己构建它。我曾经分析性地进行梯度计算,并认为 autograd 是一种魔法。所以这最初是为了理解 autograd 而构建的,但后来它的范围得到了扩展。你可能想知道,TensorFlow 和 PyTorch 之类的框架已经非常流行了,我为什么还要创建另一个呢?答案是这些代码库非常复杂,难以掌握。因此,我打算将此存储库用作一种教育工具,以了解这些巨型框架中的事情是如何工作的,其代码直观且易于阅读。 || #机器学习 #框架

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人