:一个 Flutter 库,用于运行 ONNX 模型,可以将 Pytorch、Tensorflow 等主流机器学习框架训练的模型

:一个 Flutter 库,用于运行 ONNX 模型,可以将 Pytorch、Tensorflow 等主流机器学习框架训练的模型轻松转换为 ONNX 格式,并可在 iOS、Android、Web、Linux、Windows 和 macOS 等平台上原生运行,无需进行任何修改

相关推荐

封面图片

:完全重写的Keras代码库,基于模块化后端架构进行重构,可以在任意框架上运行Keras工作流,包括TensorFlow、JAX

:完全重写的Keras代码库,基于模块化后端架构进行重构,可以在任意框架上运行Keras工作流,包括TensorFlow、JAX和PyTorch。 新功能包括:完整的Keras API,适用于TensorFlow、JAX和PyTorch;跨框架的深度学习低级语言;与JAX、PyTorch和TensorFlow原生工作流的无缝集成;支持所有后端的跨框架数据流水线;预训练模型等

封面图片

一本面向中文读者的能运行、可讨论的深度学习教科书,含 PyTorch、NumPy/MXNet、TensorFlow 和 Padd

一本面向中文读者的能运行、可讨论的深度学习教科书,含 PyTorch、NumPy/MXNet、TensorFlow 和 PaddlePaddle 实现,被全球 60 多个国家 400 多所大学用于教学,有兴趣可以看看。 《动手学深度学习》: || #电子书 #机器学习

封面图片

Keras是一个用Python编写的深度学习API, 运行在机器学习平台TensorFlow之上。 它的开发重点是实现快速实验。

Keras是一个用Python编写的深度学习API, 运行在机器学习平台TensorFlow之上。 它的开发重点是实现快速实验。能够尽快从想法到结果是做好研究的关键。 Keras特性: 1.简单 - 但不是简单。Keras 减少了开发人员的认知负担,让您能够专注于问题中真正重要的部分。 2.灵活Keras 采用渐进式披露原则 复杂性:简单的工作流程应该快速简便,同时任意 高级工作流程应该可以通过基于的清晰路径来实现 你已经学到了什么。 3.强大 Keras 提供行业强大的性能和可扩展性:它被包括NASA在内的组织和公司使用, YouTube和Waymo。 Keras & TensorFlow 2 TensorFlow 2是一个端到端的开源机器学习平台。 您可以将其视为可微分编程的基础结构层。 它结合了四个关键功能: 1.在 CPU、GPU 或 TPU 上高效执行低级张量操作。 2.计算任意可微表达式的梯度。 3.将计算扩展到许多设备,例如数百个 GPU 的集群。 4.将程序(“图形”)导出到外部运行时,如服务器、浏览器、移动和嵌入式设备。 Keras 是 TensorFlow 2 的高级 API:一个平易近人、高效的界面。 用于解决机器学习问题, 专注于现代深度学习。它为开发提供了基本的抽象和构建块 以及以高迭代速度交付机器学习解决方案。 Keras 使工程师和研究人员能够充分利用可扩展性 以及 TensorFlow 2 的跨平台功能:您可以在 TPU 或大型 GPU 集群上运行 Keras, 你可以导出 Keras 模型以在浏览器或移动设备上运行。 |||| #API

封面图片

Ava PLS Ava PLS 是一个桌面应用程序,用于在计算机上本地运行语言模型。它允许您执行各种语言任务,例如文本生成、语法

Ava PLS Ava PLS 是一个桌面应用程序,用于在计算机上本地运行语言模型。它允许您执行各种语言任务,例如文本生成、语法纠正、改写、摘要、数据提取等。完全免费,可以在本地运行类似ChatGPT 等语言大模型的容器中应用,目前支持在苹果macOS电脑运行 #AI #chatGPT #macOS #免费 链接:点击获取

封面图片

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma 7B 两种尺寸, 能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT 设备、移动设备和云端。性能和设计 Gemma 模型在技术和基础设施组件上与 Gemini 共享,这使得 Gemma 2B 和 7B 在其大小范围内相比其他开放模型具有最佳性能。 Gemma 模型不仅可以直接在开发者的笔记本电脑或桌面电脑上运行,而且在关键基准测试中的表现超过了更大的模型,同时遵循严格的安全和负责任输出标准。 主要特点: 1、轻量级、高性能模型:Gemma 模型家族包括 Gemma 2B 和 Gemma 7B.两种尺寸,提供预训练和指令调优的变体,针对其大小范围内相比其他开放模型具有最佳性能。 2、跨框架工具链支持:支持 JAX、PyTorch 和 TensorFlow 通过原生 Keras 3.0.进行推理和监督式微调(SFT),适应多种开发需求和环境。 3、易于入门和集成:提供准备就绪的 Colab 和 Kaggle 笔记本,以及与 Hugging Face、MaxText、NVIDIA NeMo.和 TensorRT-LLM 等流行工具的集成,方便开发者快速上手。 4.高效的运算能力:针对多个 AI 硬件平台上进行优化,确保在 NVIDIA GPU 和 Google Cloud TPU 上的行业领先性能。通过与 NVIDIA 的合作,无论是在数据中心、云端还是本地 RTX AI PC 上,都确保了行业领先的性能和与尖端技术的集成。 Gemma 模型能够在不同的设备类型上运行,这种广泛的兼容性使得模型能够适应各种应用场景和需求。 Hugging Face 测试链接: via 匿名 标签: #Google #Gemma 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

Carton:适用于所有框架的一个开源 API,可运行任意编程语言编写的机器学习(ML)模型的Rust库,为应用提供统一接口 |

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人