Paxos 作为一个经典的分布式一致性算法(Consensus Algorithm),在各种教材中也被当做范例来讲解。但由于其抽

Paxos 作为一个经典的分布式一致性算法(Consensus Algorithm),在各种教材中也被当做范例来讲解。但由于其抽象性,很少有人基于朴素 Paxos 开发一致性库。 本文介绍的实现代码参考了 RAFT 中的概念以及 phxpaxos 的实现和架构设计,实现 multi-paxos 算法,主要针对线程安全和模块抽象进行强化,网络、成员管理、日志、快照、存储以接口形式接入,算法设计为事件驱动,仅包含头文件,便于移植和扩展。

相关推荐

封面图片

分布式事务实践,从原理到实例,解决数据一致性

分布式事务实践,从原理到实例,解决数据一致性 描述:掌握多种分布式事务的实现方式,架构师必备技能。 链接: 大小:未统计 标签:#课程 #知识 来自:雷锋 频道:@Aliyundrive_Share_Channel 群组:@alyd_g 投稿:@AliYunPanBot

封面图片

分布式事务实践,从原理到实例,解决数据一致性

分布式事务实践,从原理到实例,解决数据一致性 描述:掌握多种分布式事务的实现方式,架构师必备技能。 链接:https://www.aliyundrive.com/s/jbJG974vHvh 大小:未统计 标签:#课程 #知识 来自:雷锋 版权:版权反馈/DMCA 频道:@shareAliyun 群组:@aliyundriveShare 投稿:@aliyun_share_bot

封面图片

卧槽,字节昨天发布这个项目DreamTuner,可以一举解决图像生成中角色一致性的问题。

卧槽,字节昨天发布这个项目DreamTuner,可以一举解决图像生成中角色一致性的问题。 效果也太好了,可以将输入图片的角色在生成新图是完美保留,并且融合度非常好,这下小说、漫画和视频的人物一致性和商品一致性问题彻底解决了。 并且可以和ContorlNet联动确保动画的稳定,间接实现了前段时间的让单张图片动起来的功能。 项目简介: 我们提出了一种新颖的方法DreamTurner,该方法将定制主题的参考信息从粗到细注入。首先提出了一个主题编码器,用于粗略主题身份保留,通过额外的注意力层在视觉-文本交叉注意力之前引入了压缩的一般主题特征。 然后,注意到预训练的文本到图像模型中的自注意力层自然地执行了详细的空间上下文关联功能,我们将其修改为自主题注意力层,以细化目标主题的细节,生成的图像从参考图像和自身查询详细特征。 值得强调的是,自主题注意力是一种优雅、有效且无需训练的方法,用于保持定制概念的详细特征,可在推断过程中作为即插即用的解决方案。 最后,通过对单个图像进行额外微调,DreamTurner 在受主题驱动的图像生成方面取得了显著的表现,可由文本或其他条件(如姿势)进行控制。 项目地址:

封面图片

MongoDB全方位知识图谱 | MongoDB是一个强大的分布式存储引擎,天然支持高可用、分布式和灵活设计。MongoDB的一

MongoDB全方位知识图谱 | MongoDB是一个强大的分布式存储引擎,天然支持高可用、分布式和灵活设计。MongoDB的一个很重要的设计理念是:服务端只关注底层核心能力的输出,至于怎么用,就尽可能的将工作交个客户端去决策。这也就是MongoDB灵活性的保证,但是灵活性带来的代价就是使用成本的提升。 与MySql相比,想要用好MongoDB,减少在项目中出问题,用户需要掌握的东西更多。本文致力于全方位的介绍MongoDB的理论和应用知识,目标是让大家可以通过阅读这篇文章之后能够掌握MongoDB的常用知识,具备在实际项目中高效应用MongoDB的能力。 本文既有MongoDB基础知识也有相对深入的进阶知识,同时适用于对MonogDB感兴趣的初学者或者希望对MongoDB有更深入了解的业务开发者 本文是作者在学习和使用MongoDB过程中总结的MongoDB知识图谱,从以下3个方面来介绍MongoDB相关知识: 基础知识:主要介绍MongoDB的重要特性,No Schema、高可用、分布式扩展等特性,以及支撑这些特性的相关设计 应用接入:主要介绍MongoDB的一些测试数据、接入方式、spring-data-mongo应用以及使用Mongo的一些注意事项。 进阶知识:主要介绍MongoDB的一些核心功能的设计实现,包括WiredTiger存储引擎介绍、Page/Chunk等数据结构、一致性/高可用保证、索引等相关知识。

封面图片

StoryDiffusion 是一个开源的图像和视频生成模型,它通过一致自注意力机制和运动预测器,能够生成连贯的长序列图像和

StoryDiffusion 是一个开源的图像和视频生成模型,它通过一致自注意力机制和运动预测器,能够生成连贯的长序列图像和视频。 这个模型的主要优点在于它能够生成具有角色一致性的图像,并且可以扩展到视频生成,为用户提供了一个创造长视频的新方法。该模型对AI驱动的图像和视频生成领域有积极的影响,并且鼓励用户负责任地使用该工具。 使用场景示例: 使用StoryDiffusion生成一系列漫画风格的图像。 创建一个基于文本提示的长视频,展示一个连贯的故事。 利用StoryDiffusion进行角色设计和场景布局的预可视化。 产品特色: 一致自注意力机制:生成长序列中的角色一致图像。 运动预测器:在压缩的图像语义空间中预测运动,实现更大的运动预测。 漫画生成:利用一致自注意力机制生成的图像,无缝过渡创建视频。 图像到视频的生成:提供用户输入的条件图像序列来生成视频。 两阶段长视频生成:结合两个部分生成非常长且高质量的AIGC视频。 条件图像使用:图像到视频模型可以通过提供一系列用户输入的条件图像来生成视频。 短视频生成:提供快速的视频生成结果。 |

封面图片

LUMIERE 这是谷歌这段时间发布的第三个视频生成模型了,不过看起来是最重要的一个,演示的质量非常高,运动幅度和一致性表现

LUMIERE 这是谷歌这段时间发布的第三个视频生成模型了,不过看起来是最重要的一个,演示视频的质量非常高,运动幅度和一致性表现都很好。 整个模型的能力非常全面,除了视频生成之外支持各种视频编辑和生成控制能力。 支持各种内容创建任务和视频编辑应用程序,包括图像到视频、视频修复和风格化生成。 详细介绍: Lumiere 一款将文本转换为视频的先进模型,它专门用于制作展现真实、多样化及连贯动态的视频,这在视频合成领域是一大挑战。 为了实现这一目标,我们采用了一种创新的空间-时间 U-Net 架构(Space-Time U-Net architecture)。这种架构能够在模型中一次性完成整个视频时长的生成,这与传统视频模型不同。传统模型通常是先合成关键的远程帧,然后通过时间上的超级分辨率技术来处理,这种方法往往难以保持视频的全局时间连贯性。 Lumiere 通过在空间和关键的时间维度进行上下采样,并利用预先训练好的文本到图像扩散模型(text-to-image diffusion model),使我们的模型能够直接生成全帧率、低分辨率的视频,并且在多个空间-时间尺度上进行处理。 我们展现了该模型在将文本转换成视频方面的领先成果,并且证明了该设计能够轻松应用于各种内容创作和视频编辑任务,包括将图像转换为视频、视频修补和风格化视频创作。 项目地址: Invalid media:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人