:大型语言模型实验室应用,支持以下特性:

:大型语言模型实验室应用,支持以下特性: 下载数百种流行模型; 通过聊天或完成与模型交互; 使用数据集库或自己的数据对模型进行微调; 评估模型; 通过 REST API 访问所有功能; 通过简单的跨平台 GUI 来完成以上所有操作

相关推荐

封面图片

| #指南LLMs,即大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型

| #指南 LLMs,即大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。 LLMs例如GPT、LLama、Mistral系列等,通过深度学习的技术架构,如Transformer,使得这些模型能够捕捉到文本之间深层次的关联和含义。模型首先在广泛的数据集上进行预训练,学习语言的一般特征和模式,然后可以针对特定的任务或领域进行微调,以提高其在特定应用中的表现。 预训练阶段让LLMs掌握了大量的语言知识和世界知识,而微调阶段则使模型能够在特定任务上达到更高的性能。这种训练方法赋予了LLMs在处理各种语言任务时的灵活性和适应性,能够为用户提供准确、多样化的信息和服务。

封面图片

中国的军事实验室首次与商业大型语言模型连接,以更深入地了解人类。

中国的军事实验室首次与商业大型语言模型连接,以更深入地了解人类。 中国科学家正在利用类似 ChatGPT 的技术,教授一种实验性的军事人工智能如何应对不可预测的人类敌人。据参与该项目的科学家称,中国人民解放军战略支援部队的一个研究实验室已经在其人工智能系统与百度的文心一言和科大讯飞的星火之间建立了物理联系。 军事人工智能能够将前线部队报告的大量传感器数据和信息转化为描述性语言或图像,并将其传递给商业模型。在确认理解后,军事人工智能会自动生成更深入讨论各种任务的提示,如战斗模拟。整个过程完全无需人类介入。 (详细请看原文)

封面图片

| #指南 - Transformer是训练语言模型最常用的架构。预训练再微调是训练语言模型的主要方法。

| #指南 - Transformer是训练语言模型最常用的架构。预训练再微调是训练语言模型的主要方法。 - 微调需要收集任务特定的数据集,一般大小在几十MB到几GB。 - 数据预处理非常重要,需要将数据清理成合适的格式,如JSONL。 - 主要的训练超参数包括batch size、epoch数、学习率、梯度累积步数等。 - LoRA是一种减少GPU内存占用的微调方法,QLoRA则通过量化进一步降低了内存需求。 - 学习曲线可以诊断模型的训练情况,判断是否欠拟合、过拟合或拟合良好。 - 模型量化可以降低模型大小,使大模型也能在低显存环境下使用。 - 模型适配器方法可以进行个性化微调而不加载整个模型。 - 模型融合可以组合多个模型的优势得到更优的单模型。 - 合理配置训练超参数以及诊断学习曲线对获得期望的模型至关重要。

封面图片

:用Rust编写的GPU加速语言模型(LLM)服务器,可高效提供多个本地LLM模型的服务。

:用Rust编写的GPU加速语言模型(LLM)服务器,可高效提供多个本地LLM模型的服务。 主要提供: 为多个本地 LLM 模型提供高性能、高效和可靠的服务 可选择通过 CUDA 或 Metal 进行 GPU 加速 可配置的 LLM 完成任务(提示、召回、停止令牌等) 通过 HTTP SSE 流式传输完成响应,使用 WebSockets 聊天 使用 JSON 模式对完成输出进行有偏差的采样 使用向量数据库(内置文件或 Qdrant 等外部数据库)进行记忆检索 接受 PDF 和 DOCX 文件并自动将其分块存储到内存中 使用静态 API 密钥或 JWT 标记确保 API 安全 简单、单一的二进制+配置文件服务器部署,可水平扩展 附加功能: 用于轻松测试和微调配置的 Web 客户端 用于本地运行模型的单二进制跨平台桌面客户端

封面图片

,一个可以让多人协作运行 Llama 和 BLOOM 等大型语言模型的项目

,一个可以让多人协作运行 Llama 和 BLOOM 等大型语言模型的项目 使用Llama 2 (70B),Falcon (180B),BLOOM (176B)(或其衍生版本)生成文本,并针对任务进行微调,可使用消费级GPU或Google Colab。 你可以加载模型的一小部分,然后加入一个网络,由其他人提供其余部分。Llama 2 (70B)的单批量推理速度可达6个标记/秒,Falcon(180B)的单批量推理速度可达4个标记/秒,足以用于聊天机器人和交互应用程序。

封面图片

:赋予大型预训练语言模型遵循复杂指令的能力

:赋予大型预训练语言模型遵循复杂指令的能力 遵循指令的能力对大部分开源大语言模型来说是一个独特的挑战。该项目提出的解决方案是使用LLM本身来生成指令数据。 研究人员开发的Evol-Instruct方法随机选择不同类型的进化操作来将简单指令升级为更复杂的指令,或者创建全新的指令。然后使用进化的指令数据来微调LLM,从而创建WizardLM。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人