MovieLLM: 用AI合成电影数据 用来训练AI对长视频理解

MovieLLM: 用AI合成电影数据 用来训练AI对长视频理解 MovieLLM 是由复旦大学和腾讯PCG的研究人员共同开发的一个新颖框架,能够从简单的文本提示中生成高质量、电影级别的视频数据。MovieLLM 能仅仅通过一个词或一个句子就能创作出一部完整的电影。 MovieLLM 旨在为长视频创建合成的高质量数据。这个框架结合了GPT-4和文本到图像的模型,以生成详细的剧本和相应的视觉内容。 通俗来讲就是:MovieLLM 通过合成电影数据为人工智能模型提供训练材料,使它们能够更好地理解和生成长视频内容。 ||| #框架

相关推荐

封面图片

专注于快速生成高质量结构化表格数据的框架,支持许多单表和多表数据合成算法,可实现高达120倍的性能提升,并支持差分隐私和其他方法

专注于快速生成高质量结构化表格数据的框架,支持许多单表和多表数据合成算法,可实现高达120倍的性能提升,并支持差分隐私和其他方法以增强合成数据的安全性。 合成数据是机器根据真实数据和算法生成的,它不包含敏感信息,但可以保留真实数据的特征。合成数据与真实数据之间不存在对应关系,并且不受 GDPR 和 ADPPA 等隐私法规的约束。实际应用中,无需担心隐私泄露的风险。高质量的合成数据还可以应用于数据开放、模型训练与调试、系统开发与测试等各个领域。 特点 高性能:支持多种统计数据合成算法,实现高达120倍的性能提升,无需GPU设备;针对大数据场景进行优化,有效降低内存消耗;持续跟踪学术界和工业界的最新进展,及时推出对优秀算法和模型的支持;通过torch等框架为深度学习模型提供分布式训练支持。 隐私增强功能:SDG支持差分隐私、匿名化等方法来增强合成数据的安全性。 易于扩展:支持以插件包的形式扩展模型、数据处理、数据连接器等 | #框架

封面图片

微软、OpenAI等公司已使用合成数据来训练AI模型

微软、OpenAI等公司已使用合成数据来训练AI模型 金十数据7月20日讯,人工智能初创公司Cohere首席执行官AidenGomez表示,由于Reddit、推特等公司的数据采集要价太高,微软、OpenAI和Cohere等公司,已使用合成数据来训练AI模型。Gomez表示,合成数据可以适用于很多训练场景,只是目前尚未全面推广。 来源:https://flash.jin10.com/detail/20230720104640322100 via 匿名 标签: #AI 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

:一种新的生成式交互环境模型,能通过无监督学习,用未标注的互联网视频数据训练而成。

:一种新的生成式交互环境模型,能通过无监督学习,用未标注的互联网视频数据训练而成。 Genie具有11B参数,能将文本、合成图像、照片甚至手绘草图转换为可交互的虚拟世界。这一模型打破了传统世界模型需要特定领域数据和动作标签的局限,通过学习潜动作空间,实现了对生成环境的逐帧控制。 研究表明,Genie不仅能够创造多样的互动体验,还能够训练未来的通用智能体,通过对未见过的视频进行模仿学习,预示着人工智能领域迈向开放式学习和创造无限数据的新时代。

封面图片

【证监会科技监管局局长姚前:重点发展基于 AIGC 技术的合成数据产业,构建大模型训练数据的监管体系】

【证监会科技监管局局长姚前:重点发展基于 AIGC 技术的合成数据产业,构建大模型训练数据的监管体系】 3月7日消息,证监会科技监管局局长姚前在《中国金融》撰文称,建议重点发展基于AIGC技术的合成数据产业。以更高效率、更低成本、更高质量为数据要素市场“增量扩容”,助力打造面向人工智能未来发展的数据优势。在强化数据要素优质供给方面,应统筹兼顾自立自强和对外开放。可考虑对Wikipedia、Reddit等特定数据源建立过滤后的境内镜像站点,供国内数据处理者使用。国家相关部门应对大模型训练数据的处理和使用标准进行统一规范;建立数据托管机制,对数据托管方进行约束,要求数据托管方按照监管机构的规定对数据来源、处理结果以及使用去向等进行监测,从而使得模型的输入、输出结果符合监管要求。

封面图片

基于GPT-2用25万条Midjourney的promps训练出来的小模型,可以生成高质量的Midjourneyprompt。其

基于GPT-2用25万条Midjourney的promps训练出来的小模型,可以生成高质量的Midjourneyprompt。其中包含用户在一个月内向Midjourney文本到图像服务发出的 250k 文本提示。 此提示生成器可用于自动完成任何文本到图像模型(包括 DALL·E 系列)的提示

封面图片

科技巨头狂撒千亿美元 “买照片” 只为训练AI模型?

科技巨头狂撒千亿美元 “买照片” 只为训练AI模型? 不只是Photobucket,Reddit、Youtube等知名网站都成了科技巨头们的疯抢目标。苹果为训练AI买图片,网友担忧隐私Photobucket是一个提供影像寄存、视频寄存、幻灯片制作与照片分享服务网站,成立于2003年。在当时,用户把这个网站当作个人相册,与功能与现在流行的在线相册非常相似。在巅峰期,该网站曾拥有7000万用户。而到2007年,Photobucket就声称已有超过28亿张图像上传到其网站。不过随着越来越多的功能更强大的在线相册App出现之后,这种网站式的在线相册也逐渐失去了热度。不过毕竟是一家成立二十多年的网站,别的不说,数据是真的多,130亿张图片与视频,足够AI模型消化很久。据悉,苹果购买的图片的主要目的就是提高生成式AI的水平。除此之外,苹果公司在早些时候与另一家图片素材网站Shutterstock达成了数百万张图片的授权协议,据悉这笔交易的价值在2500万美元到5000万美元之间。随着 今年6月份WWDC大会日益临近,每个人都在期待苹果公司能带来“令人惊叹”的AI功能。但和上笔交易不同,不少网友开始为了隐私担心。有人评论表示,Photobucket的图片来源都是基于网友的“托管,这就意外着这些图片虽然已经是陈年老图,但仍属于用户的个人秘密。而Shutterstock的数据大多是免版税的图片、矢量图和插图库,包括影片剪辑以及音乐曲目,本身就可以授权给用户使用。这么一对比,网友对于Photobucket的数据隐私安全问题也可以理解了。除了涉及隐私以外,不少网友还对这些库存照片的质量提出了质疑。如果给AI喂食这些本来就带有错误的图片,那么是否会生成质量更低的图片呢?总之,就苹果购买Photobucket图片的行为,大多数网友并不赞同。但即使冒着泄露隐私的风险,苹果和其他公司们还是得“铤而走险”搞来这些数据。主要原因还是高质量的互联网数据,可能没几年就要耗尽了。其实早在多年前,各大科技巨头就已经碰到训练语料缺失的瓶颈。据《纽约时报》报道,OpenAI在训练GPT-4时,就曾遇到英文文本资料缺失的情况。为了处理这个问题,OpenAI推出一款名为Whisper语音识别工具,用来转录Google旗下视频平台Youtube的视频音频,生成大量的对话文本。据报道称,这款工具以开源的名义转录了超过一百万小时的Youtube视频,实际上已经违反了Youtube的隐私规则,而这些资料也成为ChatGPT的基础。这并不是OpenAI第一次因为偷扒数据犯错。包括《纽约时报》在内,多家数字新闻媒体对OpenAI提起版权侵权诉讼,认为他们的数千篇报道被OpenAI用来训练ChatGPT。当然,通过“爬虫”等手段搜刮训练数据的科技公司不止OpenAI这一家,“受害者”Google也曾通过修改服务条款的方式,将“使用公开信息训练AI模型”偷偷写进隐私细则中,从而允许工程师们利用公开的文档、在线资料等开发AI产品。不过随着OpenAI在版权问题上越陷越深,其他科技巨头也只能乖乖掏钱为训练数据付费。至少比起互联网上免费抓取的数据,Photobucket近130亿的数据量还是相对来说质量更高点。花钱买数据,或许还不够可怕的是,即便是130亿的数据量,也可能喂不饱现在的AI的模型。研究机构Epoch直白地表示,现在科技公司使用数据的速度已经超过数据生产的速度,这些公司最快会在2026年就耗尽互联网上的高质量数据。有数据统计,在2020年11月发布的GPT-3上,使用了3000亿个Token的训练数据。而到了2024年,GooglePaLM 2的训练数据量则达到3.6万亿个Token。数据量是一回事,数据的质量更是直接影响AI大模型的生成能力。正如网友所担忧的那样,低质量的数据甚至可能让AI陷入不可逆转的方向。面对这样的问题,OpenAI开始尝试使用合成数据(AI生成的数据)来训练AI。这样既可以减少对受版权保护数据的依赖,同时也能训练出更强大的结果。对此OpenAI和一系列机构开始研究使用两个不同的模型来生成更有用、更可靠的合成数据,其中一个模型用来生成数据,另一个则用来对生成的数据进行审核。不只是OpenAI,英伟达很早就在用合成数据弥补现实世界的数据。在2021年11月,英伟达对外推出合成数据生成引擎Omniverse Replicator 。英伟达将其描述为“用于生成具有基本事实的合成数据以训练 AI 网络的引擎”,其作用就是用来训练AI。此产品推出后,由该引擎生成的合成数据在自动驾驶、机器人等多个场景里都得到了验证,因此英伟达也在近些年希望将其推广到更多领域,包括聊天机器人。然而,合成数据在工业场景里的成功案例,并不代表在其他领域都能遵循物理规律。有时候AI连真实图片都无法理解,更不要说理解二次生成的图片了。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人