研究表明用AI产生的语料来训练AI将使其退化并最终崩溃

研究表明用AI产生的语料来训练AI将使其退化并最终崩溃 现在,随着越来越多的人使用 AI 来制作和发布内容,一个明显的问题出现了:当 AI 生成的内容在互联网上激增并且 AI 模型开始用其进行训练,而不是使用主要人类生成的内容时,会发生什么? 来自英国和加拿大的一组研究人员已经研究了这个问题,并且最近在开放获取期刊 arXiv 上发表了一篇关于他们工作的论文。他们的发现令当前的生成式 AI 技术及其未来令人担忧:“我们发现在训练中使用模型生成的内容会导致生成的模型出现不可逆转的缺陷。” 研究人员专门研究了文本到文本和图像到图像 AI 生成模型的概率分布,得出结论:“从其他模型生成的数据中学习会导致模型崩溃一个退化过程,随着时间的推移,模​​型会忘记真正的底层数据分布……这个过程是不可避免的,即使对于具有近乎理想的长期学习条件的情况也是如此。” “随着时间的推移,生成数据中的错误会复合并最终迫使从生成数据中学习的模型进一步错误地感知现实,”该论文的主要作者之一 Ilia Shumailov 在给 VentureBeat 的电子邮件中写道。“我们惊讶地观察到模型崩溃发生的速度有多快:模型可以迅速忘记他们最初从中学习的大部分原始数据。” 换句话说:当 AI 训练模型接触到更多 AI 生成的数据时,它的性能会随着时间的推移而变差,在其生成的响应和内容中产生更多错误,并在其响应中产生更少的非错误多样性。 额外编辑:研究人员同样担忧,目前互联网上AI生成内容正在迅速增加,训练下一代ai的数据正在被迅速污染。

相关推荐

封面图片

人工智能对人工智能生成的内容进行训练将导致人工智能崩溃

人工智能对人工智能生成的内容进行训练将导致人工智能崩溃 用于训练大型语言模型的数据最初来自人类来源,如书籍、文章、照片等,这些都是在没有人工智能的帮助下创建的。但随着越来越多的人使用人工智能来制作和发布内容,一个明显的问题出现了:当人工智能生成的内容在互联网上扩散时,人工智能模型开始对其进行训练。研究人员发现,“在训练中使用模型生成的内容会导致所产生的模型出现不可逆转的缺陷。”他们研究了文本到文本和图像到图像的人工智能生成模型的概率分布,得出结论:“从其他模型产生的数据中学习会导致模型崩溃 这是一个退化的过程,并且随着时间的推移,模型会忘记真正的基础数据分布。”他们观察到模型崩溃发生得如此之快:模型可以迅速忘记它们最初学习的大部分原始数据。这导致它们随着时间的推移,表现越来越差,错误越来越多。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

MovieLLM: 用AI合成电影数据 用来训练AI对长视频理解

MovieLLM: 用AI合成电影数据 用来训练AI对长视频理解 MovieLLM 是由复旦大学和腾讯PCG的研究人员共同开发的一个新颖框架,能够从简单的文本提示中生成高质量、电影级别的视频数据。MovieLLM 能仅仅通过一个词或一个句子就能创作出一部完整的电影。 MovieLLM 旨在为长视频创建合成的高质量数据。这个框架结合了GPT-4和文本到图像的模型,以生成详细的剧本和相应的视觉内容。 通俗来讲就是:MovieLLM 通过合成电影数据为人工智能模型提供训练材料,使它们能够更好地理解和生成长视频内容。 ||| #框架

封面图片

研究发现:用人工智能生成的图像训练出的人工智能产生了糟糕的结果。

研究发现:用人工智能生成的图像训练出的人工智能产生了糟糕的结果。 斯坦福大学和莱斯大学的研究人员发现,生成式人工智能模型需要“新鲜的真实数据”,否则输出的质量就会下降。 这对摄影师和其他创作者来说是个好消息,因为研究人员发现,训练数据集中的合成图像会放大人工痕迹,使人工智能画出的人类看起来越来越不像真人。 研究小组将这种状况命名为“模型自噬障碍”。如果自噬循环的每一代都没有足够的新鲜真实数据,未来的生成模型注定会逐渐降低其质量或多样性。 如果该研究论文是正确的,那么这意味着人工智能将无法开发出无穷无尽的数据源。人工智能仍然需要真实、高质量的图像来不断进步,而不是依赖自己的输出。这意味着生成式人工智能将需要摄影师。

封面图片

AI产业的灰暗面:OpenAI、谷歌、Meta如何获取训练语料

AI产业的灰暗面:OpenAI、谷歌、Meta如何获取训练语料 《纽约时报》在本周末刊发的调查报道中,揭露了OpenAI、Google、Meta等公司为了获取训练语料所采取的一些“走捷径”措施,同时也展现了整个行业迫在眉睫的困境。美国科技巨头各走“捷径”2021年末,正在训练GPT-4的OpenAI遇到了一个棘手的问题,公司已经耗尽了互联网上所有可靠的英文文本资源,而他们需要更多、更大规模的数据来训练更强大的模型。为了处理这个问题,OpenAI的Whisper语音识别工具诞生了用来转录Google旗下视频平台Youtube的视频音频,生成大量的对话文本。报道称,包括OpenAI总裁布洛克曼在内的团队总共转录了超过一百万小时的Youtube视频。随后这些资料被输入到GPT-4系统中,并成为聊天机器人ChatGPT的基础。根据Google的政策,禁止用户将平台上的视频用于“独立”应用,同时禁止通过任何自动化手段(爬虫等)访问其视频。有趣的是,在OpenAI偷偷扒Youtube视频时,Google也在转录自家流媒体平台的内容训练大模型同样冒着侵犯版权的风险。正因如此,虽然有Google员工知道OpenAI在这么干,也没有出手阻止。因为一旦Google对OpenAI提出抗议,也有可能“引火烧身”到自己身上。对于是否采用Youtube视频训练AI的询问,OpenAI方面回应称,他们使用了“多个来源”的数据。Google发言人Matt Bryant则表示,公司对OpenAI的行为一无所知,且禁止任何人“未经授权抓取或下载Youtube视频”。不过Bryant也表示,公司只会在有明确法律、技术依据时才会采取行动。Google自家的条款,则允许平台使用这些视频开发视频平台的新功能,但这样的措辞是否意味着Google能用这些资料开发商用AI,也存在不小的疑问。与此同时,Meta的内部会议纪要显示,工程师和产品经理讨论了购买美国大型出版商Simon & Schuster以获取长文本资料的计划,另外他们还讨论了从互联网上收集受版权保护的内容,并表示“与出版商、艺术家、音乐家和新闻行业谈判授权需要的时间太多了”。据悉,有Meta的高管表示,OpenAI似乎正在使用受版权保护的材料,所以公司也可以遵循这个“市场先例”。更显性的变化是,Google去年修改了服务条款。根据内部资料显示,推动隐私政策变化的动机之一,包括允许Google利用公开的Google文档、Google地图上的餐厅评论,以及更多在线资料开发AI产品。最终Google赶在美国国庆节(7月4日)放假前的7月1日发布了修改后的隐私条款,将“使用公开信息训练AI模型”首次纳入其中。Bryant回应称,公司不会在没有用户“明确许可”的情况下使用他们的Google文档来训练AI,这里指的是自愿参与的实验性功能体验计划。即便如此还是不够正因为这些操作,近些年来伴随着人们对AI能力的惊叹,越来越多的版权方也开始意识到自己的数据被偷偷拿走训练AI了。包括《纽约时报》、一些电影制作人和作家已经将这些科技公司告上法庭,美国著作权局也正在制定版权法在AI时代的适用指南。问题在于,即便一些作家、制片人将科技公司的行为称为“美国史上最大盗窃案”,科技公司用来发展下一代AI的数据依然还是不够。2020年初,约翰霍普金斯大学的理论物理学家(现Anthropic首席科学官)Jared Kaplan发布了一篇论文,明确表示训练大语言模型用的数据越多,表现就会越好。自那以后,“规模就是一切”成为了人工智能行业的信条。2020年11月发布的GPT-3包含约3000亿个Token的训练数据。2022年,GoogleDeepMind对400个人工智能模型进行测试,其中表现最好的模型(之一),一个名为Chinchilla的模型用了1.4万亿个Token的数据。到2023年,中国科学家开发的Skywork大模型在训练中使用了3.2万亿个英文和中文Token,GooglePaLM 2的训练数据量则达到3.6万亿个Token。研究机构Epoch直白地表示,现在科技公司使用数据的速度已经超过数据生产的速度,这些公司最快会在2026年就耗尽互联网上的高质量数据。面对这样的问题,奥尔特曼已经提出了一种解决方法:像OpenAI这样的公司,最终会转向使用AI生成的数据(也被称为合成数据)来训练AI。这样开发人员在创建愈发强大的技术同时,也会减少对受版权保护数据的依赖。目前OpenAI和一系列机构也正在研究使用两个不同的模型,能否共同生成更有用、更可靠的合成数据一个系统产生数据,另一个系统对信息进行评判。当然,这种技术路径是否可行,目前仍存争议。前 OpenAI 研究员Jeff Clune认为,这些AI系统所需的数据就像是穿越丛林的路径,如果这些公司只是在合成数据上训练,AI可能会在丛林里迷失。 ... PC版: 手机版:

封面图片

研究人员测试了热门的大语言模型的版权侵权情况

研究人员测试了热门的大语言模型的版权侵权情况 新创 AI 模型评估公司 Patronus AI 周三发布了一个 API,用于检测大语言模型版权内容的 CopyrightCatcher (版权捕手)。同时该公司还展示了热门的 AI 模型生成受版权保护内容的频率。 Patronus 仅使用美国受版权保护的书籍来测试模型,并从编目网站 Goodreads 中选择流行的书籍。 研究人员设计了100种不同的提示语,让模型以续写或输出第一页的方式回应。OpenAI 的 GPT-4 表现最差,在44%的提示上生成了受版权保护的内容, Mixtral 为22%。Anthropic 的 Claude 2 为8%,Meta 的 Llama-2 为10%。总体来说所有模型,无论开源闭源都生成了受版权保护的内容,暗示了其训练数据中可能也使用了这些数据。OpenAI 曾在今年早些时候表示,如果没有受版权保护的作品,“不可能”训练顶级人工智能模型。 、

封面图片

李飞飞团队发表低成本AI训练研究引争议

李飞飞团队发表低成本AI训练研究引争议 李飞飞团队近日发表论文称以50美元训练出推理模型s1,性能接近OpenAI等顶尖产品。经调查,该模型实为基于阿里云通义千问(Qwen)模型的微调成果,训练样本仅1000条。 业内专家指出,s1模型实为在通义千问基座模型上的微调成果,该研究利用了通义模型已具备的强大推理能力,新增训练数据仅起优化作用。业内专家强调,这与从零训练全新模型有本质区别。 阿里云证实,该团队以阿里通义千问Qwen2.5-32B-Instruct开源模型为底座,在16块H100GPU上监督微调26分钟,训练出新模型s1-32B,取得了与OpenAI的o1和DeepSeek的R1等尖端推理模型数学及编码能力相当的效果,甚至在竞赛数学问题上的表现比o1-preview高出27%。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人