:一个 Python 库,用于创建和处理自然语言处理 (NLP) 数据集,以便训练大型语言模型 (LLM)。该库包含一些可扩展的

:一个 Python 库,用于创建和处理自然语言处理 (NLP) 数据集,以便训练大型语言模型 (LLM)。该库包含一些可扩展的模块,允许 NLP 研究人员从无标注 Web 采集高质量文本,并提供 GPU 加速功能。

相关推荐

封面图片

包含各种AI和ML领域的GitHub仓库列表,按不同的主题和技术分类,提供了大量与自然语言处理(NLP)、大型语言模型(LLM)

包含各种AI和ML领域的GitHub仓库列表,按不同的主题和技术分类,提供了大量与自然语言处理(NLP)、大型语言模型(LLM)、计算机视觉、数据科学、机器学习、机器学习运维(MLOps)和数据工程等领域相关的项目链接。

封面图片

关于学习数据科学的新版路线图,包括深入学习Python编程语言,统计学,数据库,机器学习,深度学习,自然语言处理以及MLOPS(

关于学习数据科学的新版路线图,包括深入学习Python编程语言,统计学,数据库,机器学习,深度学习,自然语言处理以及MLOPS(机器学习运维),提供了广泛的学习资源和实际项目实践,是学习数据科学的理想指南。 | #数据科学 #路线图

封面图片

: 一种扩展Python的编程语言,旨在以自然、直观、方便和高效的方式在程序中利用大型语言模型(如GPT)

: 一种扩展Python的编程语言,旨在以自然、直观、方便和高效的方式在程序中利用大型语言模型(如GPT) 主要特征 通过与 Python 无缝集成实现可读性和可维护性:APPL 将自然语言提示无缝嵌入到 Python 程序中,保持提示的可读性,同时继承宿主编程语言的模块化、可重用性、动态性和生态系统。 灵活及时的工程: 除了允许使用Python控制流和提示的模块化分解之外,APPL还提供提示编码助手,以模块化和可维护的方式促进提示编程。 通过异步计算自动并行化:APPL 异步安排 LLM 调用,利用它们之间潜在的独立性来促进高效的并行化。这减轻了用户手动管理同步的负担,几乎不需要额外的工作。 平滑的工具调用集成:APPL提供了直观的方法将Python函数转换为LLM可以调用的工具,使用户可以轻松地将现有的Python库和函数与LLM集成。 跟踪和故障恢复: APPL 跟踪 LLM 调用的执行并支持从故障中恢复,这对于 LLM 编程范例中的调试和错误处理至关重要。 更多功能: APPL 还为使用 的多个 LLM 后端提供统一的接口litellm,使用 的结构化生成instructor以及许多其他功能。

封面图片

:一个 python 包,允许Python开发者使用不同的大型语言模型(LLM)并通过简单的界面进行提示工程,提供了加载LLM模

:一个 python 包,允许Python开发者使用不同的大型语言模型(LLM)并通过简单的界面进行提示工程,提供了加载LLM模型、嵌入模型和向量数据库的类,以创建带有自己的提示工程和RAG技术的LLM应用。

封面图片

一个面向生产环境的多语种自然语言处理工具包,基于PyTorch和TensorFlow 2.x双引擎,目标是普及落地最前沿的NLP

一个面向生产环境的多语种自然语言处理工具包,基于PyTorch和TensorFlow 2.x双引擎,目标是普及落地最前沿的NLP技术。HanLP具备功能完善、精度准确、性能高效、语料时新、架构清晰、可自定义的特点。 借助世界上最大的多语种语料库,HanLP2.1支持包括简繁中英日俄法德在内的130种语言上的10种联合任务以及多种单任务 | #工具

封面图片

关于图相关大型语言模型 (LLM) 的一系列精彩内容。

关于图相关大型语言模型 (LLM) 的一系列精彩内容。 大型语言模型 (LLM) 在自然语言处理任务方面取得了显着进步。然而,它们与现实世界应用程序中普遍存在的图形结构的集成仍然相对未被探索。该存储库旨在通过提供精选的研究论文列表来弥合这一差距,这些论文探索基于图形的技术与 LLM 的交叉点。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人