南京大学物理学家通过一个精心设计的配对游戏似乎验证了神秘量子力学的一种特性:事物因测量而存在。

南京大学物理学家通过一个精心设计的配对游戏似乎验证了神秘量子力学的一种特性:事物因测量而存在。 简而言之:如果没有人抬头看月亮那么月亮真的在那儿吗?这个实验给出了否定的答案。 这项成果将可以用于验证量子计算机的工作。 该新闻来自于《》杂志的一篇报道。

相关推荐

封面图片

物理学家实现分子的量子纠缠

物理学家实现分子的量子纠缠 物理学家首次实现了对分子的量子纠缠。这一突破可能有助于推动量子计算的实用化。论文发表在《科学》期刊上。实现可控的量子纠缠一直是一大挑战,这次实验之前分子的可控量子纠缠一直无法实现。普林斯顿大学的物理学家找到了方法控制单个分子诱导其进入到互锁量子态。研究人员相信相比原子,分子具有优势,更适合量子信息处理和复杂材料量子模拟等应用。相比原子,分子有更多的量子自由度,能以新方式交互。论文合作者 Yukai Lu 指出这意味着存储和处理量子信息的新方法。来源 ,, 频道:@kejiqu 群组:@kejiquchat

封面图片

21℃室温超导作者美国物理学家被锤严重抄袭

21℃室温超导作者美国物理学家被锤严重抄袭 今年3月,室温超导技术出现行业地震,美国罗切斯特大学物理学家Ranga Dias(朗加·迪亚斯)明确表示,他的团队已经实现了一种可以在室温条件下实现超导的全新材料。 这种技术一旦应用,拿下诺奖几乎不是问题。不过多个团队复刻实验均以失败告终,南京大学超导物理和材料研究中心更是直接发话:“这个结论肯定是推翻了,毋庸置疑的。” 而最近,Ranga Dias于2013年在美国华盛顿州立大学发表的博士论文被《科学》网站曝出存在大量抄袭。 受害者Hamlin是美国佛罗里达大学物理系副教授,他亲自检查Dias的博士论文后发现,其中至少有6300个单词与其他17篇论文的段落相同,涉及内容高达论文的21%。 其他开展检查分析的专家们一致认为,Dias的论文存在严重抄袭。对此,Dias拒绝作出回应,并表示正在与他的论文导师商讨解决这些问题。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

物理学家成功地测量了微小粒子所受到的微弱引力

物理学家成功地测量了微小粒子所受到的微弱引力 量子引力的突破然而,南安普顿大学的物理学家与欧洲的科学家合作,利用一种新技术成功地探测到了一种微小粒子所受到的微弱引力。他们声称,这可能为找到难以捉摸的量子引力理论铺平道路。这项发表在《科学进展》杂志 上的实验利用悬浮磁铁探测微观粒子的引力微小到接近量子领域。量子实验的艺术印象。资料来源:南安普顿大学第一作者、南安普顿大学的蒂姆-福克斯(Tim Fuchs)说,这些结果可以帮助专家们找到我们的现实图景中缺失的拼图。他补充说:"一个世纪以来,科学家们一直试图弄清万有引力和量子力学是如何协同工作的,但都以失败告终。现在,我们成功地测量到了有记录以来质量最小的引力信号,这意味着我们离最终实现引力信号如何协同工作又近了一步。从这里开始,我们将利用这种技术缩小源的规模,直到我们到达两边的量子世界。通过理解量子引力,我们可以解开宇宙中的一些谜团比如宇宙是如何开始的,黑洞内部发生了什么,或者将所有的力统一到一个大理论中。"科学界尚未完全理解量子领域的规则但人们相信,微观尺度上的粒子和力的相互作用与常规尺寸的物体不同。南安普顿的学者与荷兰莱顿大学和意大利光子学与纳米技术研究所的科学家共同进行了这项实验,实验经费来自欧盟地平线欧洲 EIC 开拓者基金(QuCoM)。他们的研究使用了一套复杂的装置,包括被称为陷阱的超导装置、磁场、灵敏探测器和先进的隔振装置。它在绝对零度以上百分之一摄氏度(约零下273 摄氏度)的冰点温度下悬浮一个 0.43 毫克大小的微小粒子,测量到了微弱的拉力,仅为 30aN 。拓展量子研究的视野南安普顿大学物理教授亨德里克-乌尔布里希特(Hendrik Ulbricht)说,这些结果为今后在更小的物体和力之间进行实验打开了大门。他补充说:"我们正在推动科学的发展,这可能会带来关于引力和量子世界的新发现。我们的新技术利用极低的温度和设备来隔离粒子的振动,这很可能被证明是测量量子引力的未来方向。揭开这些谜团将有助于我们解开宇宙结构的更多秘密,从最微小的粒子到最宏伟的宇宙结构。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

物理学家创下原子量子计算机世界纪录:实现超过1000量子位

物理学家创下原子量子计算机世界纪录:实现超过1000量子位 扩大量子系统的规模对于推进量子计算至关重要,因为系统越大,其优势就越明显。达姆施塔特工业大学的研究人员在实现这一目标方面取得了重大进展。他们的研究成果现已发表在著名期刊《光学》(Optica)上。基于二维光镊阵列的量子处理器是开发量子计算和模拟的最有前途的技术之一,可在未来实现非常有益的应用。从药物开发到优化交通流的各种应用都将受益于这项技术。迄今为止,这些处理器已经能够容纳几百个单原子量子系统,其中每个原子代表一个量子比特或量子比特,是量子信息的基本单位。为了取得进一步的进展,有必要增加处理器中量子比特的数量。达姆施塔特工业大学物理系"原子-光子-量子"研究小组的格哈德-伯克尔(Gerhard Birkl)教授领导的团队现已实现了这一目标。在 2023 年 10 月初首次发表在 arXiv 预印本服务器上、现在又经过科学同行评审发表在著名期刊《光学》(Optica)上的研究文章中,该团队报告了世界上首次成功实现在一个平面上包含 1000 多个原子量子比特的量子处理架构的实验。Birkl 谈到他们的成果时说:"我们非常高兴能够率先突破 1,000 个可单独控制的原子量子比特的大关,因为还有很多其他优秀的竞争对手紧随其后。"研究人员在实验中证明,他们将最新的量子光学方法与先进的微光学技术相结合的方法使他们能够大大提高目前对可访问量子比特数量的限制。这是通过引入"量子比特增殖"的新方法实现的。这种方法使他们克服了激光器性能有限对可用量子比特数量的限制。1305个单原子量子比特被装载到一个具有3000个陷阱位点的量子阵列中,并重新组装成具有多达441个量子比特的无缺陷目标结构。通过并行使用多个激光源,这一概念突破了迄今为止几乎无法逾越的技术界限。对于许多不同的应用来说,1000 量子比特被视为一个临界值,量子计算机所承诺的效率提升可以在这个临界值上得到首次展示。因此,世界各地的研究人员一直在为率先突破这一门槛而努力。最近发表的研究成果表明,对于原子量子比特,Birkl 教授领导的研究小组在世界范围内首次实现了这一突破。该科学出版物还介绍了激光源数量的进一步增加将如何在短短几年内使量子比特数量达到 10000 甚至更多。编译来源:ScitechDailyDOI: doi:10.1364/OPTICA.513551 ... PC版: 手机版:

封面图片

物理学家发明测量单个原子三维位置的巧妙新方法

物理学家发明测量单个原子三维位置的巧妙新方法 新方法可通过单个图像确定原子的所有三个空间坐标。这种由波恩大学和布里斯托尔大学开发的方法是基于一种巧妙的物理原理。这项研究最近发表在专业期刊《物理评论 A》上。测量第三维度的挑战在生物课上用显微镜观察过植物细胞的人可能都能回忆起类似的情形。很容易看出,某个叶绿体位于细胞核的上方和右侧。但它们是否位于同一平面上呢?然而,一旦调整显微镜的焦距,就会发现细胞核的图像变得更加清晰,而叶绿体的图像却变得模糊不清。其中一个一定比另一个高一点,一个比另一个低一点。不过,这种方法无法精确显示它们的垂直位置。实际情况就是这样:各种"哑铃"的旋转方向不同,表明原子位于不同的平面上。图片来源:IAP/波恩大学如果要观察单个原子而不是细胞,原理也非常相似。所谓的量子气体显微镜可用于此目的。它可以直接确定原子的 x 坐标和 y 坐标。然而,要测量其 Z 坐标(即到物镜的距离)则要困难得多:为了确定原子位于哪个平面上,必须拍摄多幅图像,并在不同平面上移动焦点。这是一个复杂而耗时的过程。把圆点变成哑铃波恩大学应用物理研究所(IAP)的 Tangi Legrand 解释说:"我们现在已经开发出一种方法,可以一步完成这一过程。为了实现这一目标,我们使用了一种早在上世纪 90 年代就已在理论上被人们所熟知,但尚未在量子气体显微镜中使用过的效应"。要对原子进行实验,首先必须将其大幅冷却,使其几乎不动。然后,可以将它们困在激光的驻波中。然后,它们就会滑入波谷中,就像鸡蛋坐在鸡蛋盒里一样。一旦被困住,为了显示它们的位置,就将它们暴露在另一束激光下,这束激光会刺激它们发光。由此产生的荧光在量子气体显微镜下显示为一个略微模糊的圆形斑点。量子气体显微镜产生的原子图像通常是一个圆形、略微模糊的斑点。研究人员将其扭曲成哑铃状(图片显示的是理论预测)。哑铃指向的方向表示 z 坐标。图片来源:IAP/波恩大学安德烈亚-阿尔贝蒂博士解释说:"我们现在已经开发出一种特殊的方法,可以使原子发出的光的波面变形。变形的波面在照相机上产生了一个围绕自身旋转的哑铃形状,而不是典型的圆形斑点。这个哑铃指向的方向取决于光线从原子到照相机的距离"。这位研究员目前已从 IAP 转到位于加兴的马克斯-普朗克量子光学研究所,他也参与了这项研究。"因此,哑铃的作用有点像罗盘上的指针,让我们可以根据它的方向读出z坐标,"迪特尔-梅斯赫德(Dieter Meschede)博士说。波恩大学跨学科研究领域"物质"的成员之一。对量子力学实验非常重要通过这种新方法,只需一张图像就能精确测定原子在三维空间中的位置。例如,如果你想用原子进行量子力学实验,这一点就非常重要,因为通常必须能够精确控制或跟踪原子的位置。这样,研究人员就可以使原子以所需的方式相互影响。此外,这种方法还可用于帮助开发具有特殊特性的新型量子材料。布里斯托尔大学的 Carrie Weidner 博士解释说:"例如,我们可以研究原子按一定顺序排列时会产生哪些量子力学效应。"这将使我们能够在一定程度上模拟三维材料的特性,而无需合成它们"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

物理学家们提出了一种测量粒子隧穿时间的新方法

物理学家们提出了一种测量粒子隧穿时间的新方法 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 在经典物理学中,有一些硬性规定是无法规避的。例如,如果一个滚动的小球没有足够的能量,它就无法越过一座山,而是会在到达山顶之前掉头,并逆转方向。在量子物理学中,这一原则并不那么严格:粒子即使没有足够的能量越过障碍,也可以通过障碍。它就像在隧道中滑动一样,因此这种现象也被称为"量子隧道"。这种听起来神奇的现象在技术上有着切实的应用,例如在闪存驱动器中。过去,粒子以比光还快的速度通过隧道的实验曾引起过一些关注。毕竟,爱因斯坦的相对论不认可比光速更快的速度。因此,问题是在这些实验中,隧穿所需的时间是否被正确地"停止"了。来自达姆施塔特工业大学的物理学家帕特里克-沙赫(Patrik Schach)和恩诺-吉塞(Enno Giese)采用了一种新方法来定义隧道粒子的"时间"。他们现在提出了一种测量这种时间的新方法。在他们的实验中,他们采用了一种他们认为更适合隧穿量子性质的方法来测量时间。他们在著名的《科学进展》(Science Advances)杂志上发表了他们的实验设计。波粒二象性与量子隧道根据量子物理学,原子或光粒子等小粒子具有双重性质。根据实验的不同,它们的行为既像粒子,也像波。量子隧道突出了粒子的波特性。一个"波包"向障碍物滚动,就像一股水流。波的高度表示如果测量粒子的位置,粒子在该位置实现的概率。如果波包撞上能量屏障,部分波包会被反射。然而,一小部分会穿透屏障,粒子出现在屏障另一侧的概率很小。重新评估隧道挖掘速度以前的实验观察到,光粒子在隧道中的移动距离比自由路径的光粒子要长。因此,它的传播速度要比光快。然而,研究人员必须确定粒子通过后的位置。他们选择了粒子波包的最高点。但粒子并不遵循经典意义上的路径,由于不可能准确说出粒子在某个特定时间的具体位置。因此,很难说出从 A 到 B 所需的时间。沙赫和吉塞则以爱因斯坦的一句话为指导:"时间就是你从时钟上读到的东西",他们建议使用隧道粒子本身作为时钟。第二个不隧穿的粒子作为参照物。通过比较这两个天然时钟,就可以确定量子隧穿过程中时间的流逝是较慢、较快还是同样快。粒子的波特性为这一方法提供了便利。波的振荡类似于时钟的振荡。具体来说,沙赫和吉塞提议使用原子作为时钟。原子的能级以一定频率振荡。用激光脉冲照射原子后,原子的能级开始同步振荡原子钟开始工作。然而,在隧穿过程中,节奏会发生轻微变化。第二个激光脉冲会导致原子的两个内波发生干涉。通过检测这种干涉,可以测量出两个能级波之间的距离,进而精确测量出时间的流逝。第二个原子不会隧穿,它是测量隧穿与非隧穿之间时间差的参照物。两位物理学家的计算表明,隧穿粒子的时间会稍有延迟。帕特里克-沙赫说:"进入隧道的时钟比另一个时钟稍早一些。这似乎与将超光速归因于隧道效应的实验相矛盾。"原则上,利用当今的技术就可以进行这项测试,但这对实验人员来说是一项重大挑战。这是因为需要测量的时间差只有 10-26秒左右,时间极短。物理学家解释说,使用原子云而不是单个原子作为时钟是有帮助的。此外,还可以通过人为提高时钟频率等方法来放大这种效应。吉塞补充说:"我们目前正在与实验同事讨论这一想法,并与项目合作伙伴保持联系。很有可能很快就会有一个团队决定开展这项激动人心的实验。"编译来源:ScitechDailyDOI: 10.1126/sciadv.adl6078 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人