【麻省理工学院教师Robert Pozen:无论比特币发生什么,以太币都会存在很长时间】麻省理工学院教师Robert Pozen

None

相关推荐

封面图片

#波士顿 #麻省理工学院

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞": 开拓能源新时代 麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者 Yogesh Surendranath 说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液 pH 值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(Noah Lewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后 Ryan Bisbey、麻省理工学院研究生 Karl Westendorff 和耶鲁大学研究科学家 Alexander Soudackov 也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath 说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath 说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的 pH 值对这一速率有显著影响: 最高速率出现在 pH 值的两端酸性最强的 pH 值为 0,碱性最强的 pH 值为 14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH 值为 0 时的速度比 pH 值为 14 时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性 pH 值为 7(氢铵和氢氧根的浓度相等)时相等,而是在 pH 值为 10(氢氧根离子的浓度是氢铵的 100 万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily ... PC版: 手机版:

封面图片

【联邦银行和麻省理工学院DCI加入CBDC隐私研究】

【联邦银行和麻省理工学院DCI加入CBDC隐私研究】 德国联邦银行(Bundesbank)与麻省理工学院数字货币倡议(DCI)合作研究中央银行数字货币(CBDC)的隐私问题。双方致力于解决数字支付客户数据的安全问题,确保用户隐私权得到保护。德意志联邦银行行长约阿希姆·纳格尔强调,在CBDC发展过程中,保护隐私至关重要。该研究旨在制定一种减少用户侵犯隐私机会的方法。合作有助于实现欧元区内部直接转账的高效性。麻省理工学院DCI拥有与多家中央银行合作的丰富经验,包括美联储和英格兰银行,使其成为推进CBDC研究的重要合作伙伴。 快讯/广告 联系 @xingkong888885

封面图片

【波士顿联储和麻省理工学院发布OpenCBDC】

【波士顿联储和麻省理工学院发布OpenCBDC】 波士顿联邦储备银行和麻省理工学院公布了汉密尔顿项目(Project Hamilton)第一阶段的结果,汉密尔顿项目是一项专注于央行数字货币研究的合作研究工作。今天,波士顿联邦储备银行和麻省理工学院公布还在GitHub上发布了央行数字货币交易处理开源软件OpenCBDC,据悉该软件在技术上已经足够完善,可以支持在“美国这样大的国家运行通用央行数字货币”,在核心处理引擎方面,OpenCBDC处理速度超过每秒 170 万笔交易,“绝大多数交易”可以在两秒内完成结算。 波士顿联邦储备银行和麻省理工学院表示,OpenCBDC技术具有灵活性,可以根据政策决定进行调整,在第二阶段,他们将继续研究其他技术设计,以进一步优化第一阶段技术的“强大的隐私、弹性和功能”,同时更好地阐明不同设计之间的权衡关系。

封面图片

麻省理工学院的微观超材料可抵御超音速撞击

麻省理工学院的微观超材料可抵御超音速撞击 这就是麻省理工学院工程师在微观超材料实验中的发现这些材料是有意打印、组装或以其他方式设计的,其微观结构赋予了材料整体特殊的性能。在最近发表在《美国国家科学院院刊》上的一项研究中,工程师们报告了一种快速测试超材料结构阵列及其对超音速撞击的适应性的新方法。通过以超音速发射微粒子,麻省理工学院的工程师们可以测试各种超材料的弹性,这些超材料是由小到一个红血球的结构制成的。图为微粒子撞击超材料结构的四段视频截图。图片来源:研究人员提供在实验中,研究小组将印刷好的微小超材料晶格悬挂在微观支撑结构之间,然后以超音速向材料发射更微小的粒子。然后,研究小组利用高速摄像机以纳秒级的精度捕捉每次撞击及其后果的图像。他们的研究发现了一些超材料结构,与完全固态、非结构化的同类材料相比,它们更能抵御超音速撞击。研究人员说,他们在微观层面观察到的结果可以推广到类似的宏观冲击,从而预测新材料结构在不同长度尺度上如何抵御现实世界中的冲击。研究人员打印出错综复杂的蜂窝状材料,悬浮在相同材料的支撑柱之间(如图)。这种微观结构的高度相当于人类三根头发的宽度。图片来源:研究人员提供"我们正在学习的是,材料的微观结构很重要,即使在高速变形的情况下也是如此,"研究报告的作者、麻省理工学院机械工程系教授卡洛斯-波特拉(Carlos Portela)说。"我们希望找出抗冲击结构,将其制成涂层或面板,用于航天器、车辆、头盔以及任何需要轻质和保护的物体。"该研究的其他作者包括第一作者、麻省理工学院研究生托马斯-布特鲁伊尔(Thomas Butruille)和DEVCOM陆军研究实验室的约书亚-克龙(Joshua Crone)。纯粹的影响团队的新高速实验建立在之前工作的基础上,工程师们在实验中测试了一种超轻碳基材料的韧性。这种材料比人的头发丝还细,由微小的碳支柱和碳束制成,研究小组打印了这些碳支柱和碳束,并将其放置在玻璃载玻片上。然后,他们以超过音速的速度向材料发射微粒子。这些超音速实验表明,微结构材料能够承受高速撞击,有时能使微粒子偏转,有时则能捕获它们。Portela说:"但有许多问题我们无法回答,因为我们是在基底上测试材料,这可能会影响它们的行为。"麻省理工学院的工程师们捕捉到了微粒子通过精确设计的超材料发射的视频,其测量厚度比人的头发丝还细。图片来源:研究人员提供在他们的新研究中,研究人员开发了一种测试独立超材料的方法,以观察材料在没有背衬或支撑基底的情况下,自身如何承受撞击。在目前的设置中,研究人员将感兴趣的超材料悬挂在两根由相同基础材料制成的微型支柱之间。根据被测试超材料的尺寸,研究人员计算出两根支柱必须相距多远,才能在两端支撑材料,同时让材料对任何冲击做出反应,而不受支柱本身的影响,这样就能确保我们测量的是材料特性,而不是结构特性。研究小组确定了支柱支撑设计后,便开始测试各种超材料架构。对于每种结构,研究人员首先在一个小型硅芯片上打印出支撑柱,然后继续打印超材料作为柱子之间的悬浮层,在一个芯片上打印和测试数百个这样的结构。穿孔和裂缝研究小组打印出的悬浮超材料类似于错综复杂的蜂巢状截面。每种材料都印有特定的三维微观结构,如重复八面体或多面体多边形的精确支架。每个重复单元的大小与一个红血球相当。由此产生的超材料比人的头发丝还要细。随后,研究人员以每秒 900 米(每小时 2000 多英里)的速度 - 完全在超音速范围内向这些结构发射玻璃微粒子,测试每种超材料的抗冲击能力。他们用相机捕捉了每次撞击,并逐帧研究了生成的图像,以了解射弹是如何穿透每种材料的。接下来,他们在显微镜下检查了这些材料,并比较了每次撞击的物理后果。波特拉说:"在建筑材料中,我们看到了撞击后小圆柱形弹坑的形态。但在固体材料中,我们看到了许多径向裂缝和被刨出的大块材料"。总之,研究小组观察到,发射的粒子在晶格超材料上造成了小的穿孔,而材料却保持完好无损。与此相反,当以相同的速度将相同的粒子发射到质量相等的非晶格固体材料中时,它们会产生大裂缝,并迅速扩散,导致材料破碎。因此,微结构材料能更有效地抵御超音速撞击以及多重撞击。尤其是印有重复八面体的材料似乎最坚硬。意见和未来方向"在相同的速度下,我们看到八面体结构更难断裂,这意味着单位质量的超材料能够承受的冲击力是块状材料的两倍,"波特拉说。"这告诉我们,有一些结构可以使材料变得更坚硬,从而提供更好的冲击保护"。展望未来,该团队计划利用新的快速测试和分析方法来确定新的超材料设计,希望能标记出可升级为更坚固、更轻便的防护装备、服装、涂层和镶板的架构。波特拉说:"最让我兴奋的是,我们可以在台式机上进行大量这些极端实验。这将大大加快我们验证新型高性能弹性材料的速度。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院发现天气因素在引发"地震群"中起到的作用

麻省理工学院发现天气因素在引发"地震群"中起到的作用 研究人员最近在《科学进展》(Science Advances)杂志上发表的一项研究报告中指出,过去几年来,日本北部的暴雪和暴雨很可能是导致地震群发生的原因之一。这项研究首次表明,气候条件可能引发一些地震。研究报告的作者、麻省理工学院地球、大气和行星科学系助理教授威廉-弗兰克(William Frank)说:"我们看到,地表的降雪和其他环境负荷会影响地下的应力状态,而强降水事件的发生时间与地震群的开始时间密切相关。"因此,气候显然会对固体地球的反应产生影响,而这种反应的一部分就是地震。"新研究的重点是日本能登半岛正在发生的一系列地震。研究小组发现,该地区的地震活动与地下压力的某些变化惊人地同步,而且这些变化受到降雪和降水季节性模式的影响。科学家们怀疑,地震与气候之间的这种新联系可能并不是日本独有的,它可能会对世界其他地区产生影响。展望未来,他们预测,随着全球变暖,气候对地震的影响可能会更加明显。弗兰克补充说:"如果我们的气候正在发生变化,极端降水事件增多,而且我们预计大气、海洋和大陆中的水分将重新分配,这将改变地壳的负载方式。这肯定会产生影响,我们可以进一步探索其中的联系。"该研究的第一作者是麻省理工学院前助理研究员王庆宇(现就职于格勒诺布尔阿尔卑斯大学),其他作者还包括 EAPS 博士后崔昕、维也纳大学的卢洋、东北大学的广濑隆和东京大学的小原一成。自 2020 年末以来,数百次小地震震撼了日本能登半岛从日本本岛向北延伸至日本海的一块陆地。与典型的地震序列不同,能登的地震活动是一种"地震群"一种没有明显主震或地震触发因素的多次持续地震模式。麻省理工学院的研究小组与他们在日本的同事一起,旨在发现地震群中任何可以解释持续地震的模式。他们首先查阅了日本气象厅的地震目录,该目录提供了日本全国一段时间内的地震活动数据。他们重点研究了能登半岛在过去 11 年中发生的地震,在此期间,该地区经历了偶发性地震活动,包括最近的地震群。利用目录中的地震数据,研究小组统计了该地区随着时间推移发生的地震事件数量,发现 2020 年之前的地震发生时间显得零星而不相关,相比之下,2020 年晚些时候的地震强度更大,时间上也更集中,这标志着地震群的开始,地震之间存在某种关联。季节变化和地震反应科学家们随后查看了监测站在同一 11 年期间进行地震测量的第二个数据集。每个监测站都会持续记录发生的位移或局部震动。从一个监测站到另一个监测站的震动可以让科学家了解地震波在监测站之间传播的速度。这种"地震速度"与地震波穿过的地球结构有关。王利用台站测量数据计算出了过去 11 年中能登及其周边地区每个台站之间的地震速度。研究人员绘制了能登半岛地下地震速度的演变图,并观察到一个令人惊讶的模式:2020 年,也就是地震群被认为开始的时间前后,地震速度的变化似乎与季节同步。弗兰克说:"我们必须解释为什么会观察到这种季节性变化。"研究小组想知道,不同季节的环境变化是否会影响地球的底层结构,从而引发地震群。具体来说,他们研究了季节性降水如何影响地下"孔隙流体压力"地球裂缝中的流体在基岩中施加的压力大小。当下雨或下雪时,会增加重量,从而增加孔隙压力,使地震波的传播速度减慢。当所有的重量通过蒸发或径流被移走时,孔隙压力会突然减小,地震波的传播速度也会加快。研究人员建立了能登半岛的水文机械模型,以模拟过去 11 年中地下孔隙压力对降水季节性变化的响应。他们将同一时期的气象数据(包括日降雪量、降雨量和海平面变化的测量数据)输入模型。通过模型,他们能够追踪能登半岛地下过剩孔隙压力在地震群发生前和发生期间的变化。然后,他们将孔隙压力变化的时间表与地震速度的变化情况进行了比较。弗兰克说:"我们有地震速度观测数据,也有过剩孔隙压力模型,当我们把它们重叠在一起时,我们发现它们非常吻合。"特别是,他们发现,当加入降雪数据,尤其是极端降雪事件时,模型与观测数据之间的拟合度比只考虑降雨和其他事件时更高。换句话说,能登居民所经历的持续地震群在一定程度上可以用季节性降水,尤其是强降雪事件来解释。"我们可以看到,这些地震发生的时间与我们多次看到强降雪的时间非常吻合。这与地震活动密切相关。我们认为两者之间存在物理联系。"研究人员怀疑,大雪和类似的极端降水可能会在其他地方的地震中发挥作用,不过他们强调,主要的触发因素总是来自地下。"当我们首先想了解地震是如何发生的时候,我们就会想到板块构造,因为这是而且永远是发生地震的首要原因。但是,还有哪些因素会影响地震发生的时间和方式呢?这就是你开始考虑二阶控制因素的时候了,而气候显然是其中之一。"编译来源:ScitechDailyDOI: 10.1126/sciadv.ado1469 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人