Scientific American-04.2025

Scientific American-04.2025 暗物质或由隐藏粒子和力构成,传统寻找单一粒子的研究无果,新实验借助凝聚态物理技术探寻其奥秘;美国陆军工程兵团转变思路,采用与自然合作的方式开展项目;精神分裂症研究有新突破,新药物KarXT作用于新靶点;AI发展对能源需求大,数据中心耗电量剧增,可能加剧气候变化,需提高能源效率.... #科学美国人

相关推荐

封面图片

科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法 自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC 国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(Rebecca Leane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多传统探测器可能无法看到。"有鉴于此,利恩和 SLAC 博士后研究员阿尼尔班-达斯找到了 SLAC 的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在 SLAC 工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是 SLAC 研究的一个非常好的协同效应。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

: 暗物质占据宇宙大部分质量的神秘物质,可能是由被称为引力子的大质量粒子组成,它们在宇宙大爆炸后突然出现。新理论,这些假想粒子

-- : 暗物质占据宇宙大部分质量的神秘物质,可能是由被称为引力子的大质量粒子组成,它们在宇宙大爆炸后突然出现。新理论,这些假想粒子可能是来自额外维的“宇宙难民”。研究人员的计算表明,这些粒子的量可能恰好可以解释暗物质,暗物质只能通过其对普通物质的引力而被“看到”。研究合作者、法国里昂大学的物理学家 Giacomo Cacciapaglia 表示:“大质量引力子是由早期宇宙中的普通粒子碰撞产生的。这个过程被认为太罕见了,因此大质量引力子无法成为暗物质的候选对象。”但在 月发表在《物理评论快报》期刊上的 中,Cacciapaglia 与韩国高丽大学的物理学家 Haiying Cai 和 Seung J. Lee 共同发现,早期宇宙产生的引力子足以解释我们目前在宇宙中探测到的所有暗物质。 研究发现,如果引力子存在,它们的质量将小于 MeV ,因此不会超过电子质量的两倍。这个质量水平远低于希格斯玻色子为普通物质产生质量的尺度这是该模型产生足够多引力子以解释宇宙中所有暗物质的关键。他们在寻找额外维的证据时发现了这些假设的引力子,物理学家怀疑额外维和已观察到的空间的三个维度以及第四维度时间一起存在。在研究团队的理论中,当引力通过额外维传播时,会在我们的宇宙中以大质量引力子的形式出现。但是这些粒子只会与普通物质微弱地相互作用,而且只能通过引力作用。这种描述与我们所知道的暗物质惊人地相似,暗物质不与光相互作用,但是它们的引力影响在宇宙中的任何地方都能感受到。如这种引力影响正是阻止星系飞散的原因。Cacciapaglia 表示:“大质量引力子作为暗物质粒子的主要优点在于它们只在引力作用下相互作用,因此它们可以躲开检测其存在的尝试。”

封面图片

中国建成世界最大最深的暗物质实验室

中国建成世界最大最深的暗物质实验室 中国锦屏地下实验室(CJPL)自2010年投运,经过三年修建,中国锦屏地下实验室二期(CJPL-II)于2023年12月投入科学运行。其33万立方米的超大空间超过了之前深度和体积的纪录保持者意大利的格兰萨索国家实验室(LNGS)。更大的空间让粒子和天体物理氙探测实验(PandaX)和中国暗物质实验(CDEX)这类项目可以再次升级。芝加哥大学的物理学家Juan Collar说:“他们在十年内完成的工作令人赞叹。”暗物质一直是科学界的一个谜。物理学家经过计算发现,可见物质产生的引力太弱,无法阻止快速移动的星系飞散。因此,他们提出理论,认为暗物质就像不可见的胶水,把整个宇宙黏在一起。虽然暗物质理应无处不在,但事实证明直接观测到暗物质很难,因为理论上暗物质与普通物质不会相互作用,也不会释放、反射或吸收光。之前有人提出探测到了暗物质,但反驳观点认为,这些实验可能受到了其他信号的混淆。科学荣誉等候着第一个探测到暗物质的人,这也是粒子物理学的最大任务之一,在CDEX合作组工作的台湾中央研究院的物理学家Henry Tsz-King Wong说道。山下之光寻找暗物质的最佳场所是地下,因为岩体能替探测器挡掉背景“噪音”,比如从太空向地球洒落的高能粒子宇宙射线就会淹没潜在的暗物质信号,意大利国家核物理研究院的物理学家Marco Selvi说,想从地球表面探测暗物质就像在一个人声鼎沸的体育场里辨认一个小孩发出的微弱声音。在深地环境下,CJPL-II 的宇宙线通量仅为地表的0.000001%,使其成为世界上屏蔽效果最好的地下实验室之一。实验室的墙体还包裹了由橡胶、混凝土等材料混合而成的10厘米厚的保护结构,能防止周围岩体释放的水和放射性氡气,以免暗物质探测实验受到干扰。实验室的研究团队已经在利用新增的空间了。在CJPL-II施工期间,PandaX团队将其探测器从120公斤液氙升级到4吨。当潜在的暗物质颗粒与氙原子发生碰撞,其能量就会转变成能被光电传感器探测到的闪光。该探测器很快将赶上LNGS的XENONnT实验(8.6吨)以及美国桑福德地下研究所的LUX-ZEPLIN实验(7吨)。PandaX-4T探测器位于一个900立方米的水池中,这是为了能进一步屏蔽杂散粒子的干扰,团队成员、上海交通大学物理学家周宁表示,“灵敏度提升后,我们就能用探测器测试不同类型的相互作用。”该团队最终想要打造一个40-50吨的氙探测器,有望与以40吨为目标的达尔文实验(DARWIN Experiment)相抗衡。与此同时,CDEX团队也在部署一台锗探测器,锗探测器能寻找比氙实验寻找的质量更小的潜在暗物质粒子,CDEX团队成员、北京清华大学物理学家岳骞说。CDEX探测器已经从1公斤锗升级到10公斤锗,并计划打造一个1吨量级的探测器阵列。如果一个暗物质粒子撞到了这个探测器,其相互作用就应产生电荷,这个电荷会转换为电信号。岳骞希望CDEX能吸引更多国际合作,目前已经有印度和土耳其的研究人员加入。Selvi说,虽然各国对暗物质的搜寻非常激烈,但世界上多个地下实验室共同开展相似实验能让研究人员比对结果。2022年,PandaX团队便使用一种类似手段确认了LNGS的XENON 实验的结果该实验发现2020年XENON探测到的一个意外信号来自背景噪音而不是暗物质。Collar认为,新的方法和理论也将推动暗物质的研究,而不是用更大更灵敏的探测器打败对手。他说,“已经有很多重复的版本了。”周宁说,下一个十年里,CJPL-II团队将继续提升探测器的灵敏度。他也希望全球暗物质研究社区能共享数据并将CJPL-II的数据与他们自己的数据结合。他说:“我们还有很多工作要做。” ... PC版: 手机版:

封面图片

《2.粒子物理实验 》

《2.粒子物理实验 》 简介:通过高能加速器和精密探测器探索物质最深层次结构及相互作用规律,研究领域涵盖夸克、轻子、标准模型验证等。大型国际合作项目如LHC通过质子对撞产生极端能量,帮助科学家发现希格斯玻色子,揭示基本力统一机制,并持续搜寻暗物质粒子等新物理现象。 亮点:建造跨国土木工程级科学装置,实现纳秒级粒子轨迹捕捉;首次观测到顶夸克、τ中微子等基本粒子;多国联合数据分析推动分布式计算革新;实验结果多次革新人类对宇宙本质的认知框架。 标签:#基础科学 #高能物理 #标准模型验证 #大型强子对撞机 #CMS实验 #ATLAS实验 #中微子振荡 #CERN 链接:

封面图片

中子星碰撞事件GW170817帮助揭开暗物质之谜

中子星碰撞事件GW170817帮助揭开暗物质之谜 两颗正在合并的中子星的艺术家插图。资料来源:NSF/LIGO/索诺玛州立大学/A. Simonnet类轴子粒子研究文理学院的物理学家布帕尔-德夫(Bhupal Dev)利用这次中子星合并的观测结果天文学界将这一事件命名为GW170817得出了关于类轴子粒子的新约束条件。这些假想粒子尚未被直接观测到,但它们出现在标准物理学模型的许多扩展中。轴子和类轴子粒子是构成科学家至今无法解释的宇宙中部分或全部"缺失"物质或暗物质的主要候选粒子。至少,这些相互作用微弱的粒子可以作为一种门户,将人类所知的可见部分与宇宙中未知的黑暗部分连接起来。《物理评论快报》(Physical Review Letters)上这项研究的第一作者、该大学麦克唐纳空间科学中心(McDonnell Center for the Space Sciences)的研究员德夫说:"我们有充分的理由怀疑,超越标准模型的新物理学可能就潜伏在不远处。"中子星合并的启示当两颗中子星合并时,会在短时间内形成一个高温、高密度的残余物。德夫说,这个残余物是产生奇异粒子的理想温床。残余物会在一秒钟内变得比单个恒星热得多,然后根据初始质量的不同,沉淀为一颗更大的中子星或黑洞。在这幅动画中,注定要灭亡的中子星呼啸着走向灭亡,它代表了在 GW170817 发生九天后观测到的现象。图片来源:美国宇航局戈达德太空飞行中心/CI 实验室这些新粒子悄无声息地逃离了碰撞的碎片,在远离其源头的地方,可以衰变成已知的粒子,通常是光子。德夫和他的团队(包括华盛顿大学校友史蒂文-哈里斯(现为印第安纳大学 NP3M 研究员)以及让-弗朗索瓦-福尔廷、库弗-辛哈和张永超)发现,这些逃逸的粒子会产生独特的电磁信号,可以被美国宇航局的费米-LAT 等伽马射线望远镜探测到。研究小组分析了这些电磁信号的光谱和时间信息,确定他们可以将这些信号与已知的天体物理背景区分开来。然后,他们利用费米-LAT关于GW170817的数据,推导出轴子-光子耦合作为轴子质量函数的新约束条件。这些天体物理约束与实验室实验(如轴子暗物质实验(ADMX))的约束相辅相成,后者探测的是轴子参数空间的不同区域。粒子物理学的未来前景未来,科学家们可以利用现有的伽马射线太空望远镜(如费米-LAT)或拟议中的伽马射线任务(如华盛顿大学领导的先进粒子-天体物理学望远镜(APT)),在中子星碰撞期间进行其他测量,帮助提高他们对类轴心粒子的理解。德夫说:"中子星合并等极端天体物理环境为我们寻找轴子等暗部门粒子提供了新的机会之窗,轴子可能是了解宇宙中缺少的85%物质的关键。"编译自/scitechdaily ... PC版: 手机版:

封面图片

科学家利用固态自旋量子传感器研究了电子自旋之间新的速度相关相互作用

科学家利用固态自旋量子传感器研究了电子自旋之间新的速度相关相互作用 标准模型是粒子物理学中一个非常成功的理论框架,描述了基本粒子和四种基本相互作用。然而,标准模型仍然无法解释当前宇宙学中的一些重要观测事实,例如暗物质和暗能量。一些理论认为,新粒子可以充当传播者,在标准模型粒子之间传递新的相互作用。目前,缺乏关于自旋速度相关新相互作用的实验研究,特别是在相对较小的力距离范围内,几乎不存在实验验证。研究人员设计了一个配备两颗钻石的实验装置。使用化学气相沉积在每颗钻石表面制备了高质量的氮空位 (NV) 集成。一个NV系综中的电子自旋用作自旋传感器,而另一个则充当自旋源。研究人员通过相干地操纵两个金刚石NV系综的自旋量子态和相对速度,在微米尺度上寻找电子速度依赖性自旋之间的新相互作用效应。首先,他们使用自旋传感器来表征磁偶极子与自旋源的相互作用作为参考。然后,通过调制自旋源的振动并执行锁定检测和相位正交分析,他们测量了SSIVD。研究的实验结果。图片来源:DU et al.对于两种新的相互作用,研究人员分别在小于1厘米和小于1公里的力范围内进行了首次实验检测,获得了宝贵的实验数据。正如编辑所说,“这些结果为量子传感界带来了新的见解,以利用固态自旋的紧凑、灵活和敏感特征来探索基本相互作用。该团队由中国科学院中国科学技术大学杜江峰院士和邢荣教授领导,浙江大学焦满教授合作。更多信息:Yue Huang 等人,与固态量子传感器的奇异自旋-自旋-速度相关相互作用的新约束,物理评论快报 (2024)。DOI: 10.1103/PhysRevLett.132.180801 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人